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Activities and Findings

I. FINAL REPORT ON AFOSR GRANT: 49620-02-1-0338

II. TITLE: COLLISION DYNAMICS OF RYDBERG ATOMS AND MOLECULES AT ULTRALOW
ENERGIES

III. PERIOD: 01-JUL-2002 TO 31-DEC-2005

IV. PRINCIPAL INVESTIGATOR: M. R. FLANNERY

V. ADDRESS: SCHOOL OF PHYSICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA
30332-0430

VI. BACKGROUND: ULTRACOLD RYDBERG PLASMAS

Advances in cooling and trapping of neutral gases have made possible a new branch of atomic physics namely
interactions, dynamics and collisions in ultracold (T < 1K) systems. When atoms, initially prepared in the ground
state at sub-millikelvin temperatures, are laser excited to highly excited Rydberg levels a gas of slowly moving Rydberg
atoms is produced. The sufficiently dense sample of highly excited atoms then ionizes spontaneously with very high
efficiency producing extremely cold plasma containing Rydberg atoms, electrons and ions. The ionization is caused by
collision with the small number of Rydberg atoms at cold temperature or by absorbing background radiation. Most of
the electrons are trapped by the ions and collide, de-excite and ionize the Rydberg gas creating an electron avalanche.
The fact that the plasma can be sustained is evidence of the importance of "super-elastic" (de-excitation) collisions.
The plasma state can also revert back to Rydberg atoms via three-body recombination between electrons, ions and
neural gas atoms. We wish to study the interaction and collisions between two Rydberg atoms in the Rydberg gas.
This interaction may result in Rydberg molecules and in ionization which produces a frozen Rydberg plasma. We are
also interested in the dynamics/interplay between the gas and the plasma, a hybrid which we shall refer, for brevity,
as an ultracold Rydberg plasma.

VII. FOCUS: ULTRACOLD RYDBERG PLASMAS

The focus of the research reported here is based on providing, in as complete as possible format, theoretical
descriptions of the basic interactions and processes involved in ultracold Rydberg plasmas. Not only will the present
theory of atomic and molecular collision physics be advanced (in a form for future textbooks), but also the basic
physical rates and cross sections will find extensive application in more basic simulations, not only of Rydberg
plasmas but also of astrophysical plasmas associated with HII regions of hot stars and of the experiments at CERN
on the formation of anti-hydrogen.

A. Physical Processes: Interactions and collisions

The basic processes in Rydberg plasmas we have investigated during the period of the grant included:

1. Stark Mixing (via ion-collision): Ry+ + Ry(n, f) -* Ry+ + Ry(n, f')

2. Radiative Cascade: Ry(nt) --* Ry(ne') + hv -- Ry(n'"') + hi- -4 .... groundstate



3. Interactions between polar Rydberg atoms: Ry(ne) + Ry(n', t') --- Ry(n" < n, f") + Ry+ + e

4. Possibility for formation of long-range Rydberg-Rydberg molecules: Ry 2 ---* Ry(nt) ± Ry(n', t')

where f and s denote faster and slower electron speeds. These four topics have been successfully investigated and
developed. The work resulted in seven publications.

VIII. PUBLICATIONS

The following 11 publications was attained under the grant:

A. Research

1. Equivalent multipole operators for degenerate Rydberg states, by V. Ostrovsky, D. Vrinceanu and M. R. Flannery,

Phys. Rev. A (2006, submitted).

2. Plasma Screening within Rydberg Atoms in Circular States, by M. R. Flannery and E. Oks, J. Phys. B: Atom.

Molec. and Opt.Phys., (2006, submitted).

3. Magnetic stabilization of a Rydberg quasimolecule in circular states, by M. R. Flannery and E. Oks, Phys. Rev.
A 73, 013405 (2006)

4. The enigma of nonholonomic constraints, by M. R. Flannery, Am. J. Phys., 73 (2005), pp. 265-272.

5. Long-range interaction between polar Rydberg atoms, by M. R. Flannery, D. Vrinceanu and V. N. Ostrovsky, J.
Phys. B: Atom. Molec. and Opt.Phys., 38 (2005), pp. $279-$293.

6. Quantal and Classical Radiative Cascade in Rydberg Plasmas, by M. R. Flannery and D. Vrinceanu, Physical
Review A 68 (2003),030205(R) pp. 1-4.

7. Stark Mixing in Rydberg Systems by Ultralow energy Collisions with Ions, by M. R. Flannery and D. Vrinceanu
in Dissociative Recombination of Molecular Ions with Electrons, ed. S. L. Guberman (Kluwer Aca-
demic/Plenum Publishers, 2003), pp. 151-166.

8. Stark Mixing in Rydberg Atoms by ultralow energy collisions with ions, by M. R. Flannery and D. Vrinceanu,
Int. Journ. Mass Spectrom. 223-224 (2003), pp. 473-489.

9. Atomic and Molecular Collision Processes, by M. R. Flannery, in Physicists' Desk Reference, Third Edition
(AIP-Springer Press, New York, 2003), Chap. 6, pp 145-241.

10. David Bates, 1916-1994, by M. R. Flannery, in Physicists of Ireland (Institute of Physics Press, London,
2003), pp 262-272.

11. Classical and Quantal Atomic form factors for nem --+ n'e'm transitions, by M. R. Flannery and D. Vrinceanu
Phys. Rev. A 65 (2002), 022703 pp. 1-10.

IX. INVITED PAPERS PRESENTED AT SCIENTIFIC CONFERENCES

During the grant period, the following seven invited papers were presented:

1. Recombination and cascade in Rydberg plasmas, by M. R. Flannery, Invited Paper, presented to Cold and
Ultra Cold Plasma and Rydberg Physics Workshop at the Institute of Theoretical Atomic and Molecular
Physics, Harvard University, Cambridge, MA , September 26-28, 2005.
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2. Interactions and Collisions in Ultracold Rydberg Plasmas, by M. R. Flannery, Invited Paper, presented at
2005 DAMOP, Division of Atomic, Molecular and Optical Physics, American Physical Society
Lincoln, Nebraska, May 17-21, 2005.

3. Ultracold Rydberg-Rydberg Interactions, by M. R. Flannery, Invited Paper, presented at Sixth International
Conference on Dissociative Recombination: Theory, Experiment and Applications, Mosbach, Ger-
many, July 12-17, 2004.

4. Ultracold Rydberg-Rydberg Interactions and Collisions, by M. R. Flannery, Invited Paper, presented at In-
ternational Workshop on Rydberg Physics, Dresden, Germany, May 2-7, 2004.

5. Non-Adiabatic Transitions in Ultracold Collisions of Rydberg Atoms , by M. R. Flannery, Invited Paper,
presented at Moscow-Chernogolovka Workshop on Nonadibatic Transitions in Quantum Mechanics,
Moscow and Chernogolovka, August 4-7, 2003.

6. Processes in Ultracold Rydberg Plasmas and in antihydrogen formation, by M. R. Flannery, Invited Paper,
presented at Symposium on Applicatiom of Plasma Processes, Liptovska Sielnica, Slovensko, Slovakia,
January 13-18, 2003.

7. Stark Mixing in Rydberg Atoms/Molecules by ultralow energy collisions with ions, by M. R. Flannery, Invited
Paper, presented at European Conference on Dynamics of Molecular Collisions, (Molec 14), Koc
University, Istanbul, Turkey, September 1-6, 2002.

In addition to those above, various contributed papers were routinely presented at the annual meetings of APS-
DAMOP (Division of Atomic, Molecular and Optical Physics) and at the GEC (Gaseous Electronics Conference).

X. PRIZES AWARDED FOR RESEARCH

During the grant period, the PI was the recipient of the following prizes awarded by professional societies for
his research:

"* Recipient of the 2002 Beams Award of the Southeastern Section of the American Physical Society (SESAPS)
for Outstanding Research. Cited: "For his pioneering, seminal, influential and enduring contribution to Atomic
and Molecular Collision Physics."

"* Recipient of the 2002 Bates Prize of the Institute of Physics, London. Cited: "For his distinguished contributions
to the field of theoretical atomic physics and, in particular, for his studies of recombination processes with
applications to astrophysics and plasma physics."
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XI. PROGRESS ACHIEVED DURING PERIOD 2001-2005

A. First Major Highlight: Collisional Stark Mixing at ultralow energies in Rydberg Plasmas

Ry+ + Ry(n, f) -4 Ry+ + Ry(n, f')

The 40 year-old problem of ni - ne' transitions (Stark Mixing) in a Rydberg atom induced by the time-dependent
(dipole) electric field generated by (adiabatic) collision with a slow ion was solved exactly in a very elegant and novel
way. The exceptional rich SO(4) dynamical symmetry of the hydrogen atom ennabled the development of a radically
new theory of the collision process and the construction of both the exact classical and quantal solutions in a unified
way. The classical-quantal correspondence obtained transcends the well-known Ehrenfest's theorem just because of
the SO(4) group symmetry of the hydrogen atom. An advantage of the classical treatment is that it was able to
expose essential physics, which remains obscured in the quantal treatment. The exact classical and quantal solutions
exposed the analytical beauty of the problem and the solutions are applicable to a wide range of problems, ranging
from ultracold Rydberg plasmas, antihydrogen formation to ZEKE (zero-energy-electron-kinetic-energy spectroscopy).
The research has resulted in three publications (4, 6 and 7 above), where the results are shown in great detail. Three
invited talks (7 - 9, above) on the work were presented to Professional Societies.

B. Classical and Quantal Atomic form factors for ntm -* n'e'm transitions

An analytical expression for the classical form factor or impulsive probability Pif(q) for nlm -+ n'l'm tran-
sitions is derived directly from the "phase-space distribution" method previously proposed (Phys. Rev. A 60, (1999)

1053) and is compared with quantal results. Exact scaling laws are derived for the classical probability for any i --+ f
transition. As n is increased, convergence to the classical results is obtained and becomes even more rapid upon

averaging in succession over the m and then the f substates. The classical results reveal the basic reason for the

underlying structure in the variation of Pif with momentum transfer q. They can operate as an effective averaged

version of the exact quantal counterpart. The form factor appears as a basic atomic kernel in the quantal impulse
cross section which we derived (M. R. Flannery and D. Vrinceanu, Phys. Rev. Lett., 85, (2000), pp. 1-5) in a novel
form suitable for exposing direct classical correspondence. This basic result is useful for atomic collisions involving
highly excited Rydberg atoms. This work Classical and Quantal Atomic form factors for nem -+ n'l'm transitions,
by M. R. Flannery and D. Vrinceanu was published in Phys. Rev. A 65 (2002), 022703.

C. Second Major Highlight: Radiative Cascade in ultracold Rydberg Plasmas

Atoms in high (n, f) states formed in cold Rydberg plasmas decay to the ground state in a succession of

radiative transitions populating intermediate excited states. We have investigated the energy route preferred in
radiative cascade of an excited atom in an initially prepared Rydberg level nf. In so doing, we advanced a remarkably
accurate classical theory of the subsequent trajectory in nf-space produced by radiative cascade and illustrate a
powerful classical-quantal correspondence at work. A classical treatment of the transition probability (Einstein A-
coefficient) was also provided. It is worth noting that classical theory of radiative decay, until now, was not vigorously
pursued after 1930, presumably due to its prediction that the accelerating spiralling electron will ultimately pass
through the Coulomb force center, an untenable feature evident for those lowest n and f states, the only states then
accessible to experimental observation. For high n states, however, we have shown that the classical picture developed
here works remarkably well, even for states with f/n > 0.2 which includes the majority of Rydberg states created in
the ultracold Rydberg plasmas recently observed. The work QuantalandClassicalRadiativeCascadeinRydbergPlasmas,
by M. R. Flannery and D. Vrinceanu, was published in Physical Review A 68 (2003),030205(R). Two invited talks
(1 and 2 above) on the subject were recently presented by the PI at DAMOP 2005 and at an ITAMP workshop on
Rydberg Physics.
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D. Third Major Highlight: Interactions between polar Rydberg atoms

The most attractive and the most repulsive potential-energy curves for interaction between two Rydberg
atoms in a broad superposition of internal angular momentum states were studied. The extreme Stark states have
the largest dipole moments and provide the dominant contribution to the interaction which is then expressed as a
long-range expansion involving the permanent multipole moments Qj of each polar atom. Analytical expressions were
obtained for all Qj associated with principal quantum number n of H(n) and permit the long range expansion for the
H(n)-H(n') first-order interaction to be explicitly expressed analytically in terms of n, n' and internuclear distance R.
Possible quasi-molecular formation was investigated. Direct calculations show that the H(n = 2)-H(n' = 2) interaction
is capable of supporting 47 bound vibrational levels. As n increases, the long-range interaction becomes increasingly
attractive so that molecular formation at large internuclear distances is expected to be scarcely possible for these
extreme Stark levels. The work Long - rangeinteractionbetweenpolarRydbergatoms, by M. R. Flannery, D. Vrinceanu
and V. N. Ostrovsky was published in J. Phys. B: Atom. Molec. and Opt.Phys., 38 (2005), pp. S279-S293. Four
invited talks on the subject were presented to Professional Societies (Talks 2-5, above).

E. Broader impact of proposed activity

The theory and computational techniques under development here are important not only for understanding
present and future experiments in Rydberg plasmas but also the trapping experiments at CERN on antihydrogen
formation and on other issues as dipole blockade. The research is of fundamental significance in helping provide
new theories of the basic interaction between two Rydberg atoms and the basic collision mechanisms involving Ry-
dberg atoms and molecules at ultralow energies. The research will also have an impact on and may well establish
new classical-quantal correspondences, which have a broad appeal for physical transparency and illumination of the
underlying atomic and molecular mechanisms. The framework of these complex atomic processes could possibly be
understood in terms of classical mechanics. This approach may help develop nice educational tools for illustrative
and various pedagogical aspects of Rydberg dynamics.

F. Educational and Outreach Activities

The invited paper Recombination and cascade in Rydberg plasmas by M. R. Flannery was presented to Cold
and Ultra Cold Plasma and Rydberg Physics Workshop at the Institute of Theoretical Atomic and Molecular
Physics, Harvard University, Cambridge, MA , September 26-28, 2005. This 30 min talk was web-cast to all DAMOP
scientists and was made available to all who choose to view it. Moreover, the two book chapters

1. Atomic and Molecular Collision Processes, by M. R. Flannery, in Physicists' Desk Reference, Third Edition
(AIP-Springer Press, New York, 2003), Chap. 6, pp. 145-241.

2. Electron, Atom and Ion Scattering, by M. R. Flannery, in Encyclopedia of Chemical Physics and Physical
Chemistry (Institute of Physics Press, London, 2001), vol.2, Chap.B2.2, pp. 1773-1819.

were solicited to be standard desk references in Atomic and Molecular Physics and Chemistry.
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G. Some Representative Results

1. Radiative Cascade

The present classical treatment presents radiative cascade in a physically transparent way and revealed the
"trajectory" in nt space obeyed by the cascade, scaling rules and other aspects hidden within the quantal approach.
Quantal-Classical correspondence in radiative decay is directly demonstrated. Classical transition probabilities are also
presented and are in excellent agreement with quantal transition probabilities, even for moderate quantum numbers.
This work was recently published as a Rapid Communication as M. R. Flannery and D. Vrinceanu, Physical Review A
68 (2003), 030205(R) pp. 1-4. Some results are illustrated in Figs. 1-3. The classical treatment of radiative presented
has proven to be accurate, particularly for Rydberg states with f/n > 0.1 (preponderant in recombination) and has
provided an accurate yet physically transparent picture of radiative cascade of Rydberg states. The deduced trajectory
in nt -space obeyed by radiative cascade origination from a constant source is confirmed by quantal calculation. The
deduced classical invariant

1 - o/no 1 - E2/n 2

C(no,to) = 1 (1)to 3()

has, as yet, no quantal analogue and indicates a hidden symmetry to radiative processes which has not yet been found.
The theory has been further developed to provide here a symmetrized new version of the Bohr Power Correspondence
Principle and a classical version of Einstein transition rates, to a high degree of accuracy. It is particularly appropriate
for the analysis of Rydberg plasmas over (n, t) and for the proposed deactivation of the high n > 50 states in the
ATRAP experiment by laser de-excitation methods, subjects of intense current theoretical and experimental interest.

80 f * P P fie
6f00

60 e . -.

06 ,

40 , .- .. ;;,-°

20 .tS;.tt

10 20 30 40 50 60 70

FIG. 1. "Trajectories" in (n, f) space for initial states lo = 1, 11, 21, 31,41, 51, 61, 71 within the no = 80 shell. Dots correspond
to a change of one unit of angular momentum quantum number (At = -1). Dashed diagonal line t = n represents transitions
between circular states. (From M. R. Flannery and D. Vrinceanu, Physical Review A 68 (2003), 030205(R)).

6



V

Pn "
0.08

100.

n .. ....

40 •" '" \ ...
10

-0.02 -........ . , .=...,=.10
'20 80

20 ,60

20 e

FIG. 2. The steady-state quantal distribution pt• of ne states populated by radiative cascade originating from a source
maintained at level no = 100, to = 55. The quantal ridge follows our analytically prescribed classical trajectory Eq.(1). (From
M. R. Flannery and D. Vrinceanu, Physical Review A 68 (2003), 030205(R)).
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FIG. 3. Two-dimensional representation of Fig. 2 but with quantal iso-distributions represented by lines with magnitudes
determined by each color code on RHS . White line is our analytically prescribed classical ridge Eq.(1). ( From M. R. Flannery
and D. Vrinceanu, Physical Review A 68 (2003), 030205(R)).

2. Stark mixing in ion-Rydberg collisions

Representative probabilities as a function of f' are presented in Fig. 4 for the n = 28, f = 18 -- 28, f'
transitions in atomic hydrogen. The increasing values of X - 1/by -- ,, oTe/b2 corresponds to a series of collisions
either at fixed impact parameter b and decreasing v, or vice-versa. Increasing X therefore corresponds to lengthening
the duration -'c,,U of a collision at fixed b. Since the dipole interaction couples f -- f ± 1 states, the sequence
of transitions which occur during the time TcoLl of collision is then f -- (f - 1) • (f - 2) * .... t-, ,mj, and
£ - (£ + 1) T (£ + 2) ..... v m" For the shorter collision times o corresponding to small X, t' and a

do remain well within the boundary values 0 and n - 1 of the angular momentum. There is insufficient time to
sequentially access the highest or lowest values of £' during the collision. Steps then appear in the classical structure.
Within the classical inaccessible regions, the quantal results exhibit the characteristic exponentially decreasing and
increasing variation. When the extreme limits, £' = 0 and ' = n - 1, of angular momentum can be accessed during
the collision, then these limits act, in turn, as additional sources which then proceed to populate the f' = 1, 2,.. and
£ = n-2, n-3, ... states from below and above, throughout the duration of the collision. The classical probabilities then
exhibit two distinct cusps arising from these secondary sources. These cusps merge into one as the collision duration
time continues to increase with increasing values of the collision parameter X. Expressions have been provided for
the £t'-locations of the classical steps and cusps and the structure explained in physically transparent form. What has
been done here is what would be achieved from numerical solution of a n 2 by ni

2 array of closely coupled states. This
is a very effective demonstration of the tremendous power of analytical theory based on the SO (4) group symmetry of
the hydrogen atom. We aim to develop similar theory for Stark mixing in Rydberg-Rydberg collisions which operate
via the dipole-dipole orientation dependent R- 3 interaction.
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FIG. 4. Quantal and Classical transition probabilities P4)(WX),(ordinates), for Stark Mixing from initial 1 11 to final t'
states, (abscissae), within the n = 28 energy shell at specific values of the collision parameter X which is essentially a measure
of and increase with the duration Tf 0ol of the collision. (From M. R. Flannery and D. Vrinceanu, 2003)
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3. Long-range interactions between "polar" Rydberg atoms

By 'polar' Rydberg atoms, we mean a Rydberg atom with electronic angular momentum spread over a
large number of angular momentum f states associated with a given principal quantum number n. These states are
sufficiently flexible that a permanent dipole and higher permanent multipoles Qj are created quite easily out of the
large number - n2 of degenerate angular momentum states t within the energy shell. These Rydberg atoms can be
called "polar" because they possess permanent multipole moments. We have investigated the physics of the long-range
interaction between these polar Rydberg atoms and investigated the possible formation of long-range molecules from
two Rydberg atoms with the same (or different) principal quantum numbers n, but with a broad superposition of
many degenerate (non core-penetrating) angular momentum states t.

Our aim was to first The long-range interactions so determined are of basic interest in this rapidly evolving
field and will also be useful for various processes involving ultracold Rydberg atoms e.g., for Penning ionization, an
important process required to sustain ultracold Rydberg plasmas.

The flexibility of the energy shell of a Rydberg atom in a broad superposition of angular momentum states
changes dramatically the nature of the interaction between such atoms. These Rydberg atoms are termed "polar"
because they have permanent multipoles Qj. Higher-order permanent multipoles are introduced as n increases. The
highest non-zero multipole associated with level n is QN where N = 4j = 2(n - 1). In the long-range interaction
between two Rydberg atoms, the degeneracy of the energy shells has profound and decisive consequences. Its account
represented a challenging quantum mechanical problem which had not received any previous theoretical attention
until our present work.

First, we identified the physics and mechanism of the interaction between two degenerate Rydberg atoms.
The wavefunction for the case when the two dipoles of the Rydberg atoms are aligned parallel is shown in Fig. 5.

-00
50

-50

-100...
-200 -100 0 100 200 300

FIG. 5. Wave functions for the two most elongated Stark orbitals, VP(,_ 1) o o(r±-Rm/2) with n = 10, aligned along internuclear
axis R. Each orbital is centered at its own nucleus with typical separation R. (c.f. Sect. 6). The orbital overlap is strongly
suppressed and is maximum at the arrow.

We then obtained analytical expressions for the various multipoles Qj as a function of n which allows the
coefficients of the long-range expansion to be calculated purely in algebraic terms. Analytical expressions for the
electrostatic long-range first-order interaction between polar Rydbergs in extreme (the most stretched) Stark states
were provided in terms of Qj, expressed analytically as functions of principal quantum number n. Each multipole Qj
varies as n21.

By including only the attractive dipole-dipole '-. R- 3 and the repulsive quadrupole-quadrupole - R-5 inter-
actions, we have shown (Fig. ??) that molecules could possibly be formed with relatively large equilibrium separations
Rm P-: 3.7n 2. Addition of the dipole-octupole attraction, which also ,-" R 5 , however offsets the quadrupole-quadrupole
repulsion and destroys this possibility; except for the n = 2 case, which has no octupole and higher moments.
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We have found, in general, that all permanent multipoles must be included in order to determine the correct
coefficients of the first-order long-range expansion. Explicit calculations, including all multipoles Qj; j = 1, 2, 3, .., N =
2(n - 1) appropriate for a given n = 2,3, .., 50, show that the net contribution arising from all the multipoles except
that due to the last multipole, Q2n-2, are all attractive. Net repulsion arises only from the final multipole which
introduces terms , R2N-1 = R4n- 3 into the expansion. Potential wells are indeed exhibited for all H(n)-H(n) and
the steepness of the repulsive wall increases with n. Representative results are shown in Fig. 6.

0.1 - 33
- 4--4

-5--5

- 6--6
- 7--7
- 8--8
- 9--9
- 10--10Sk -- 11 -- 1111

-0.1

1 1.5 2
R/n 2a0

FIG. 6. H(n) - H(n) Rydberg-Rydberg molecular potentials (??) for several adjacent n- n manifolds with
n = 3,4,5,6,7,8,9, 10, 11.

Fig. 7 illustrates several potential curves for interaction between two 'polar' Rydberg atoms in different levels
n and n' but having their dipoles oriented in the same direction. The principal quantum number of one of the atoms is
n = 10, while the other Rydberg atom has n' ranging from 3 to 11. It is seen that the well becomes much deeper and
steeper as n' increases, as expected from the increasingly attractive contributions from the additional multipoles. The
minima, however, are still located at about 1.2 min (n2 , n/2 ), where distortions, mentioned previously for the n = n'
case may also be in evidence. It therefore seems highly unlikely that long-range Rydberg-Rydberg molecules can be
formed from the extreme Stark states with the greatest dipole moment. The attraction proves just too overwhelming
so that repulsion finally sets in at separations R too small for validity of the long range expansion.

11
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FIG. 7. H(10) - H(n') Rydberg-Rydberg molecular potentials (??) for parallel dipole-dipole configuration with
n' = 3,4,5,6,7,8,9, 10, 11.

In summary, we have also shown that all the multipoles associated with a given n must be included within
the long range expansion in order to determine the correct nature of the first-order interaction. The net contribution
from all the multipoles is purely attractive, except for the last multipole Q2(n-1) which provides repulsion, which
becomes increasingly steeper with n. Potential minima however occur at relatively modest internuclear distances
R ; 1.2n 2 , where other effects as second-order van der Waal's attraction and electron overlap become effective,
thereby compromising validity of the long-range expansion at such low R. As n increases, the interaction becomes
increasingly attractive so that long-range molecular formation is expected to be scarcely possible for these extreme
Stark levels.

We have therefore provided the first detailed investigation of the full first-order long-range interactions between
'polar' Rydberg atoms. This work has opened up a very promising and interesting new field with many theoretical
and experimental possibilities and challenges ahead.

12
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Abstract

Quantal and classical theories developed recently for the full array of ne -* ne' transitions (Stark mixing) in Rydberg atoms
by collision with slow ions are summarized. Quantal and classical probabilities P(n) are provided for transitions in atomic hyd-
rogen, induced by the time-dependent (dipole) electric field generated by adiabatic collision with charged particles. A universal
classical scaling law permits examination of the (rapid) convergence of the quantal probabilities onto the classical background
as n is increased. The structure exhibited in the variation of P(") with t' is explained and a quantal-classical correspondence is
manifest. A modification to take account of quantum defects in Rydberg systems (with quantum defects) is presented. Essential
agreement is obtained with measurements of Na+-Na(28d) collisions. (Int J Mass Spectrom 223-224 (2003) 473-489)
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction into high f --* states, followed by Stark mixing colli-
sions ne -* ne' and by radiative relaxation. Since the

The ion-Rydberg atom/molecule collisional process n-changing collisions are relatively unimportant at
ultralow energies, the i-mixing collisions are essen-

Az+ + Ry(n, f) ---> Az+ + Ry(n, f") (1) tial in producing the low angular momentum states

is called collisional Stark mixing since the t-changing required to radiatively decay at relatively high rate to

transitions t --- f' occur within the same energy low n-levels, thereby stabilizing the recombination.

shell n of the Rydberg species and are induced by In zero-kinetic-energy-photo-electron spectroscopy

the time-dependent electric field generated by the (ZEKE-PES), high f states are produced [2] from

passing ion Az+. The process is significant over a low f states by electric fields. It is also significant

broad range of interest and applications. For exam- in dissociative recombination [3-5]. Experiments

ple, the formation of anti-hydrogen by three-body [6] on Na+-Na(28d) collisions have measured large

recombination e+ + -i + e+ --+ + e+ at ultralow e-mixing cross-sections, even for dipole-forbidden

energies, where the sequence [1] is collisional capture transitions.
The process is also interesting from a theoretical

Corresponding author. point of view and has remained largely unsolved for

1387-3806/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PH S1387-3806(02)0093 1-4
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four decades. Notable historical landmarks include a tor A has the symmetrized (Pauli-Lenz) quantal form

modified first-order impact parameter treatment [7], a 112(p x L - L x p) -

classical diffusion theory [8], hydrogen atom in weak A =

E-B fields [9], a truncated closely-coupled channel Pn

system of equations [10], Monte-Carlo simulations where Pn = (- 2 me En)1 / 2 and the eigenenergy En =

[11], and quantal and classical treatments of 0 -+ f' -(l/2n 2 )(e2/ao). Components of A satisfy the fol-
transitions [12-15]. lowing relationships:

[Aj, H] = 0 : i.e., A is a conserved quantity,

[Lj, Ak] = ihcjknAn : i.e., A is also a system vector,

[Aj, Ak] = ih6jknLn : i.e., A's components do not commute,

A • L = L • A = 0 : i.e., the vectorA is orthogonal on L,

A2 + L 2 = (n 2 
- 1)h2 : i.e., A is constant for intrashell transitions,

Exact solutions of Stark mixing in atomic hydro- where Ekjn is the Levi-Civita antisymmetric symbol

gen induced by the time-dependent (dipole) electric for any k, j = 1, 2, 3. Hence (En, L, A) provide five

field generated by (adiabatic) collision with a slow independent conserved quantities. These commutation

ion and probabilities for the full array ne -. n0' of relations define the SO(4) dynamic symmetry group

transitions were only recently presented [16-19] in for the restricted motion of the orbital electron to the

both classical and quantal formulations. The excep- energy shell. The SO(4) operators can be disentangled

tionally rich dynamical symmetry of the hydrogen by introducing J± = (L+A)/2. Each J+ and J_ op-

atom provides the key foundation which enables both erator separately generates a SO(3) subalgebra, such

the classical [16,17] and quantal solutions [17-19] that SO(4) -SO(3) SO(3). The J± operators there-

to be constructed in a unified way, by using group fore commute i.e., [J+, J-] = 0, obey usual angular

representation theory. In this paper (dedicated to momentum rules [Jj, Jk] = ihcjknJn andhave integral

Werner Lindinger), a full case study of collisional or half-integral eigenvalues j2 = i(i + 1)h2 where

Stark mixing is presented, together with exploration j = (n - 1)/2. In classical treatments, the quantum

of classical-quantal convergence and correspondence operators L and A are replaced by their classical vec-

for the full transition array. tors and the quantal commutators (ih)-1 [B, C] by the
corresponding Poisson brackets. The classical analogy
is that the set of coupled equations for L and A in a

2. Group symmetry constant electric field £ become decomposed into an
uncoupled set for the vectors J± which independently

Conserved quantities for Coulomb attraction are the precess [20] with Stark frequency os = (3e/2pn)&
unperturbed Hamiltonian about the electric field direction F according to

p 2  e2  dJ± = ±-s x J±. (2)

2 me r d-

the angular momentum L = r x p and also the clas-
sical Runge-Lenz vector 3. Collision interaction
A = p' p x L - mee2rl Fig. I illustrates the collision dynamics. The fre-

I L r quencies of the Rydberg electron and the collision

directed toward the pericenter and normalized to an- are Wn = Vn/an and (OR = 1Iý1, respectively. Here

gular momentum units, are all conserved. The opera- an = n2ao and vn = pn/me = vo/n are the orbital



MR. Flannery, D. Vrinceanu/lnternational Journal of Mass Spectrometry 223-224 (2003) 473-489 475

i 'V

x b

Fig. 1. Ion-Rydberg collision dynamics and the characteristic frequencies a,, (orbital), o0
R (collisional) and cOs (Stark).

radius and velocity, averaged so that e2/an - PnVn. electron. The collision frequency WR <<, the orbital
For slow variation of the electric field E, generated frequency wn of the Rydberg electron. In classical
by the passing ion, our simulation of the collision treatments, the electron position vector r can then be
in Fig. 2 shows that the frequencies are ordered as replaced by its average (r) = -( 3 / 2 pn)A. For quan-
COs < COR < won. It also shows that, although L and tal matrix elements within the same energy shell,
A change little during one orbit, significant change
is accomplished during the collision over the course (nt'm'Irlntm) 2- ) (nmnIAjnfm) (3)
of many ('--50) electron orbits. It also indicates that
the t-changing collision at ultralow impact energies which is Pauli's replacement rule [21]. The collision
satisfies the following three approximations: is orbital adiabatic in the region b > (v/vn)an.

3.1. Orbital adiabatic 3.2. Weak field

This means that the collision is much slower than Collisions which change only angular momen-
the much more rapid motion of the orbital Rydberg tum occur at large impact parameters b where

the ion-Rydberg atom interaction potential is the
ion-dipole potential V = -d • ,, where d = -er
is the dipole strength and where the electric field

S= -ZeR/R 2 is constant over the spatial extent of

the atom. The Stark frequency is then

final 3e _ (_3Ze2

"ii 2 pn 1 2pnR2,

(n,t) L Under these adiabatic and dipole assumptions, inter-

action with the electric field is then characterized by

Fig. 2. The classical probability is a ratio of the two phase V(A, R) = -d. , = -s(R) " A. (4)
space volumes: the volume of the region within that part of the
initial-state manifold containing coordinates which can evolve into
the final state manifold, and the total volume of the initial-state The weak field region is where the Stark energy split-
manifold. ting haoS << «l , the separation between neighboring
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energy levels, i.e., the region b • R >> (3Z/2)1 /2an where Ho is the free atom Hamiltonian and V is the
where the dipole assumption is valid, interaction potential. In the interaction representation,

the corresponding equation is
3.3. Classical path i h au_ = VI U1 (9)

Since the angular momentum IzR
2 • of relative mo-

tion of the heavy-particle collision system of reduced where V1 = eiH~t/hVe-iHt/fh and U1 (t, to)

mass A is very much greater than the angular mo- exp(iHot/h)U(t, to)exp(-iHoto/h) are the corre-

mentum th of the Rydberg electron, it is conserved to sponding potential and evolution operators in the

-Atvb so that R- 2 = -'P/bv. interaction representation. The transition probability

Under the dipole and classical path assumptions, for a general i --> f transition at time t is

the Stark frequency is afi(t) = (Of(r, t)i T'j(r, t))
3e
-s= = (uO')R (5) (Of (r, t)IU (t, to) IcO(r, to))

= Qjf (r)IUi(t, to)I~f(r)) (10)

where the dimensionless Stark parameter is defined as

the ratio where ýPi is the target wavefunction under external

Cos 3Z janyV,1  3Z (ba) 2 (-r 0coll interaction V. In the asymptotic limits (t --+ oo),
ot='0 kR - )2 \bv = -2 (6) it tends to the unperturbed basis set Oj (r, t) =

of Stark to collision frequencies. Also rol = b/v is 41j(r) exp(-iEjt/h). The transition amplitude for a

a measure of the collision duration and ro = ao/vo is Stark mixing process is flu = (nflU(oo, -oo)Ina)
the au of time. The ion-hydrogen adiabatic interaction where u and fP now label the states within the

is then same energy shell. The potential matrix elements
(nflVj(t)Inot) = (n•[V(t)Ina) are then identical.

V(A, 0; a) = -os . A The superscript n will now be omitted, since all dy-
dO (namics is restricted to the energy shell described by

= ---- (A2 sin P + A3 cos P) (7) quantum number n. Eq. (9) with V1 = V is then

which has the advantage that it is expressed only in au,
terms of the generators of the SO(4) group. Moreover, ih- = -a (A 2 sin 0 + A3 cos (P)U1a",
the components {LI, A2 , A 3 ) generate a subgroup of (1  Lh )Lh(
the original symmetry group. Under the above three =-a eL/A 3 e-L/ U1  (11)
approximations, the resulting set of quantal and clas- in which the basic identity
sical equations governing the problem of collisional
Stark mixing at ultralow energies can be solved ex- eXaBe-XA =B x2

a c tly .
(!22

(12)

4. Quantal theory and the commutation relation [Lj, Ak] = ihcjknAn
above are invoked. The exact solution of (11) is

4.1. Quantalintrashell dynamics U1 (t, to) = eiOLI/h exp [-- AO5(Ll - cA 3 )]

The Schr6dinger equation for the time evolution x e-i%°OLI/h (13)
operator U(t, to) is

ia(U This can also be directly verified from (11) with

at (Ho+ V)U (8) use of the appropriate commutator algebra. The
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probabilities for full array of Stark mixing transition 4.2. Quantal transition probability. exact solution
f -- e' transitions can be obtained from

In, The 10 folded summation within the quantal prob-
ability (15) has been contracted [19] to yield the fol-

P)-2 + 1 n l -)lowing compact form,

(14) 2f' + 1 n-1

The direct use of (15) permitted analytical proba- n n (2L+1)
L=le'-eI

bilities [17,18] to be obtained only for low n = 2,3.
Numerical calculations were required for higher n. x I L1 7 42(X) (17)
However, upon the decomposition L = M + N and J i jji
A = M - N, the solution separates as for the transition f --* t/ probability between any
U1 = UM ® UN states with given angular momentum. This involves

only one summation. Here I... ) is the 6 - j symbol
where the operators UM and UN are defined by for coupling of three angular momenta, j = (n - 1)/2

UM = eiCMl/h e-iA0(Ml-C1M3)/he-i0oMl/h and HjL is a special matrix element of the irreducible
representation of the group 0(4). This function (also

and called the generalized character XL, associated with
the irreducible representation of the rotation group) is

UN = eiPNI/h eiA¢(NI+aN3)/h e-i¢•°NI/h well studied (see, for example, the books by Talman
(1968) and Varshalovich et al. (1988)). In terms of ul-

and where A 0 (t) = 0 (t) - 0P(to) is the polar angle traspherical polynomials rCn, defined as the coeffi-
swept out by R within time interval (t - to). Since cients of the expansion

the angular momentum-like operators M and N com-
mute, the corresponding evolution operators UM and 2)- 00

UN act independently as rotations in carrier spaces of (1- 2xy + = n

dimension 2j + 1 = n. The probability for transition n=O

f -- f" between states with given angular momentum it can be written as
is defined by

SL(2j + 1)(2j - L)!
1 , HjL(x) = (2L), ,I- +L+ I)!P (1 1~) -- 2 (2jl l in -On( 5

U +I rEm E la,,mI (15) xsX)L(L+I)Co,
M=-f m'=-' x(sin C) ( -2jL (CO X)

where the (t, m) -+ (f', in') transition amplitude be- The angle X is determined by
tween angular momentum states within the energy 1 + U2 COS A 4 (18)
shell of quantum number n is cos X =+12 (18)

al,'m,.Ie = (nf'ni'IUM ® UN Infn) and is called a collision parameter defined both by the
-E V'rm Ce'm' U)(J) (U DY(U)u Stark parameter a = 3Z/2bi3 and by the polar angle

iZ jiL'lVIv' , M) VV Adl5 swept out by the internuclear vector R during the

(16) collision time r,,o1. Eq. (17) is capable of providing
exact numerical results [19] even for large quantum

and where D(J)(R) is Wigner's 2j + 1 dimensional numbers n, in contrast to previous expressions [17,18]
matrix representation of the finite rotation R. where the number of terms to be summed increases
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dramatically with n. Note that the capacity of the pro- Stark mixing transition may therefore be viewed as a
jectile to produce angular momentum changes is gov- multi-step process involving partial waves of angular
emed solely by the parameter X, the argument of HjL momentum L.
in Eq. (17). Since Acl varies with time t, expression
(17) furnishes P(,n) as a function of t and Stark pa- 4.4. Weak coupling approximation

rameter a, all absorbed within collision parameter X.
It can be shown from (17) that both detailed balance The weak coupling limit of the exact quantal proba-

(2f + 1)P(n) = (28' + 1)P;(,ý) and probability conser- bility is obtained fromothe limit Of(19)sia -+ 0. Then

vatin ) = 1 are satisfied. It is important to x~2 ( 3 ,cs +1adsn a hvIIo 'ultraspherical polynomial C&(1) = (2,k + N - 1)/n
note that the above solution (17) for P0,j is equivalent so that (17) tends to
to the numerical solution that would, in principle, be
obtained from the very large (n2 x nz) set of coupled PIII (a - 0)
differential equations resulting from closely-coupling 2f' + 1 n-I f( L L

all n2 quantal nfm states. Since the dipole interaction E (2Ln+ 1

alone couples f -+ f ± 1 transitions, the sequence of L=l-il

transitions occurring during the collision time "TcoIl 2 • x _nn ]_L)_ L2

b/visthen e (f+1) • (,+2) "",- max L( 2 L ,! n (n+L_)! ! (19)

and f (f- 1) ; (f- 2) .. '.in This
physical sequence is acknowledged theoretically by where j = 2n + 1. This weak-coupling result allows

the exponential nature of the interaction evolution all 8 --- 8' transitions. The leading term of the prob-

operator (13). ability (19) varies as at2 L, with L = I1 - f'j = 1 for

optically allowed and L = 2, 3, 4, ... for forbidden

4.3. Transitions from f = 0 transitions. Since
f±4- I 1}2 (2--'j2 )f

For the special case of zero initial angular momen- - 1n2

tum, the 6-j symbol is (formula (1) page 299 in [22]) 1 j j n(n2 - 1)(4j2 - 1)

the dipole (L = 1) contribution to the weak-coupling{f8 0 L (--)e'+n+l 3,'L probability (19) is!j jj] •n(28' + 1)
oD > n2 2 (aoVo• 2

to give the transition probability for 0 --+ 8' transitions nn'e+ 3Z 2 1 In (n >
as_ 4 8> n2 (n _>2 )a 2  (20)

p(n) 28' +1 2 328+1
n2 H--i(x), which varies as a 2 . This result (20) satisfies detailed

which is identical with the previous result of Kazansky balance and agrees with the Born limit (Section 6)

and Ostrovsky [14]. Eq. (17) can then be written in for 8 --+ 8 ±1 1 dipole transitions.

the interesting form as 4.5. Integral cross-section

n-I18 8 2

(n) (x) = n(28' + 1) pgj(X) The integral cross-section for Stark mixing is
L--W iii J JV\

anet.nel 27rj P()b db - 4.5 Z2 ,ra -
Since the square of 6 - j symbol is the probability _. = 2 P V

of coupling three angular momenta, a physical inter- p(n) da
III (Y, AO)T3(21)pretation may be given for the above formula. The x n ,
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A lower limit amin is imposed [ 17] in order to account of uncoupled equations. Since the averaged energy-

for physical effects as quantum defects, spin-orbit cou- change rate
pling and Debye screening in a plasma, which de- dE AE e ft+rn/2

pend, of course, on the specific problem considered. - = --- J e • rdt
This prevents the well known logarithmic divergence dt "rn Tn Jt-m/2

which originates in (21) from the o - 0 weak cou- = -eg(t) • (i) ;t 0

pling limit (20) of (17) for f -+ f I transitions, there is no secular change to the Rydberg energy E.

The cross-sections for optically forbidden transitions The magnitudes M2 = N 2 = (L2 + A2 )/4 = n2 h2 /4
exhibit no such divergence. therefore remain constant throughout the collision.

This set (23) can be solved exactly and solutions

5. Classical theory for A(t) and L(t) obtained [16,17] in terms of their
initial values, ot and AO.

5.1. Classical intrashell dynamics
5.2. Classical transition probability

In the presence of an electric field of intensity e,
the angular momentum L changes at the rate The hypersurface in the (LI 0 {AI space on which

the initial state is uniformly distributed is restricted by
dL
- = -er x E the constraints in Section 1 and has the volume:
dt

The collision is adiabatic with respect to the electronic Vnh = (ILl - fh)8(IAI - hv/n2 - f2)

orbital motion, ((OR = 4ý << con), so that 9 is constant JJ

over one period rn and the collision lasts over many x 3(L A) dL dA (24)

(ý_50) periods. The secular change of L during the which integrates to

collision is then the classical average
dL AL e t+r./2 Vnf = 87ur21 Vin 2 - f2h

2

- - =-_- f (r x 6) dt'
dt rn n d--)dt2 Each point within this manifold evolves during the col-

_(Le)n') lision according to the above solutions for A(t) and

3 - (t) x A(t) L(t), so that only a fraction of possible initial states

over one orbital period rn. Although the vectors L and can have the final angular momentum f" after the col-

A change very little during each r, consistent with the lision. Following the definition (24), the overlap vol-

weak field approximation (cos << co), they do suffer ume of accessible (L, A) space which contains both
initial and final states is

significant change over many in. The following set of

coupled equations can then be deduced [8,20] Vnee = ff B(ILI - th)B(IL'I - f'h)

dA dL = x

dt=-os x L, d-- =-os x A x(IAI - hrn 2 - t 2 )3(L • A) dL dA

where cos = a'PR varies with time. Under the substi- (25)

tution LThe transition probability is defined as the ratioL+A L-A
M = -- I N = (22) (n) Vnee' (26)

2 2 pil __ (6

the above set decouples to yield the set

dM dN of phase space volumes. The classical transition prob-
= -R x M,= +aeR x N (23) ability is therefore defined in this new (A, L) phase
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space, designed to exploit the dynamical symmetry, 6. Results
as the normalized volume of phase space accessible
to both initial and final states. This overlap volume 6.1. Quantal-classical convergence
is the volume occupied by those final states which
originate from the initial states and is illustrated in The classical function nP'cnn(X) of (27) is inde-
Fig. 2. pendent of n. Such universal functions can be un-

Upon integrating (25), the classical transition prob- covered within classical treatments, in general, and
ability obtained [16,17] from (26) is written as the this feature will be exploited, to explore the rapid
following analytic expression convergence of the quantal results onto the classical

0, iflsinxI < I sin(q - '2)1

K{[ sin 2(r/, q-r/)-- sin 2 (/1, -- r/)]/ sin 2X_- sin 2(ql -- 77E)1}2(e'/n) [n2-sin 2 (- /sin2( - q i2) (, iflsinxl > I sin (q I +- 2)1

W = 7rhl sinxI -ins -sin 2 (q -

K{[ sin 2X- sin 2 (11 -1q2)]/ sin 2(1I +q-2)- sin 2 (n1 -nA2)}

V`Sin 2 (71I+'2)- sin 2 ('1I 1 2) iflsinxl < Isin (r1 + q- 2)1.

(27)

The classical probability is a function of the same frame as n is increased. Fig. 3 illustrates the rapid

collisional parameter X basic to the quantal result (17) convergence with n for all transitions from a given

and given by (18), and also of the angles q11 and '12 initial f at a given collision parameter X - 1/by.

determined by Fig. 4 demonstrates the rapid convergence with n for
a specific f -- f' transition over all X. The quantal

cos r - = e and cos 1 t2 - - • , (28) results oscillate in general about the universal clas-q n O n sical frame. The structure of the classical frames of

the initial and final state ratios E = f/n and E' = Figs. 3 and 4 can be explained in terms of two dis-

f'/n. Note that the eccentricities ci,f of the initial and tinct regions within the classical accessible region,

final classical Kepler orbits are sin q11,2. The collision and two classical inaccessible regions. This structure

parameter X increases monotonically with the Stark remains obscured within the quantal results.

parameter t = 3Z/2Li) as
6.2. Structure

x 22 sin (--) +(-( 3 ) Representative probabilities as a function of f' are

presented in Fig. 5 for the n = 28, f = 18 -+ 28, t'
The transition probability P(,) (X) can be also inter- transitions in atomic hydrogen. The increasing values
preted as the distribution of final states with angular of X 1/by -'- r'Tol/b 2 corresponds to a series of
momentum f' which originate from one initial state of collisions either at fixed impact parameter b and de-
angular momentum f and result from collision with a creasing v, or vice-versa. Increasing X therefore cor-
charged projectile. The probability (27) satisfies de- responds to lengthening the duration of a collision at
tailed balance 2erP1,t = 21'Piep, where 2f is the clas- fixed b. Since the dipole interaction couples f --. f 1
sical weight of the state ne. Moreover, the classical states, the sequence of transitions which occur dur-
limit of the full quantal probability (17) can be di- ing the time rc of collision is then f • (f - 1)
rectly and easily obtained to provide a result identical (f - 2) f ... and t =ý (f + 1) • (f +
with (27). 2) tnmax" For the shorter collision times r,
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Fig. 3. Plots of the scaled transition probability nP,.n_0  (x) as a function of the ratio E = 9'/n illustrating, as n increases, the convergence

of the exact quantal results (blue dots) onto the fixed classical framework (red line), at constant values of the ratios t/n = 0.1 and collision
parameter X = 0.27r.
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Fig. 4. Plots of the scaled transition probability nP(n) ,,X as a function of collision parameter X illustrating, as n increases, the
convergence of the exact quantal result (blue line) onto the fixed classical framework (red line), for constant values of the ratios c = e/n
and e' = e/n.



MR. Flannery, D. Vrinceanu /International Journal of Mass Spectrometry 223-224 (2003) 473-489 483

(28,18) 4(28, I') X = 0.02 0 0 (28,18) --)(28, 1) x=0.170.100

0.320 0.080

I
0.240 0.060

0.160 0.040

0.080 0.020

0.000 15 - 0.000 ;
0 5 10 15 20 25 0 5 10 15 20 25

(28 18) -- (28, ') X = 0.2n (28 .18) (28, 1') X = 0.25n
* ° 0.120

0.072 0.096

0.054 0 0 0.072

0.036 • * 0.048

0.018 * 0.0240 0
0.000 0.000-1

0 5 10 15 20 25 0 5 10 15 20 25
(28,18) -(28, I') X = 0.3n . (28,18) -- (28, 1') x =0.41

0.150

0.120 0.120

0.090 0.090

0.060. 0.060

*~SO 0S0.030 0.030

0.000 - 0.000
0 5 10 15 20 25 0 5 10 15 20 25

(28 18) --*(28, r) X = 0.457 (28,18) -(28, V) X = 0.57t

0.150

0.096 0.120

0.072 * 0.090

0.048 0 0.060

0.024 00 0.030 -

0.000 0.000
0 5 10 15 20 25 0 5 10 15 20 25

Fig. 5. Quantal and classical transition probabilities P(,n,)(x) for Stark mixing from initial f = 11 to final I' states within the n = 28
energy shell at specific values of the collision parameter X.
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corresponding to small X, fmin and f' do remain I sin (ql + q2)1 = I sin X 1, respectively. The structure
well within the boundary values 0 and n - 1 of the in Fig. 3 (which corresponds to one of the structures
angular momentum. There is insufficient time to se- in Fig. 5) can therefore be physically explained.
quentially access the highest or lowest values of f' A map of the various classical zones in the plane of
during the collision. Steps then appear in the classical reduced initial and final angular momenta (e/n, f'/n)
structure. Within the classical inaccessible regions, the is displayed in Fig. 6 for the four values, ci = 0.2, 0.4,
quantal results exhibit the characteristic exponentially 0.6 and 0.8 of the Stark parameter and for A 0 = -7r,
decreasing and increasing variation. When the extreme appropriate to an undeflected classical path. Quantities
limits, Z' = 0 and f' = n - 1, of angular momentum
can be accessed during the collision, then these limits A = [ sin xI - sin ('i1 + 112)1 (29)
act, in turn, as additional sources which then proceed and
to populate the f' = 1,2,... and = n-2, n-3 .... B Isinx I- I sin (Y7l - q12)1 (30)

states from below and above, throughout the duration
of the collision. The classical probabilities then ex- are useful to describe the various possibilities. In the
hibit two distinct cusps arising from these secondary central region A is negative and B is positive. Within
sources. These cusps merge into one as the collision the lower left and upper right comers both 3 and A are
duration time continues to increase with increasing positive. The transition is classically forbidden where
values of the collision parameter X. The e'-locations B < 0 in the upper left and lower right comers (gray
of the classical steps and cusps in (27) are determined zones). Across the separatrix (dotted line) which sep-
by the solutions of I sin (ij - q2)1 = I sin X I and arates the classical inacessible/accessible regions, the

1.0

0.8
A<0 A <0

0.6 B0
0.4 B>0

0.2

A>O
0.0
1.0 A>0 A>0

0.8Ac Aco

0.6--30. 13>0.

0.4 < A>0
A>

0.2A

a--0.6 ov=0.8
0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

fln ln

Fig. 6. Contour plots of the solutions of A = 0 (solid line) and B = 0 (dotted line) for various values of ot. In gray zones B < 0 and the
transition is classically forbidden.
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transition probability jumps from zero (in the gray the left upper and lower comers. The elastic t' e
zone) to some finite value (in the central zone). Along transitions are always possible, even when a --+ 0.
the solid line, for which A = 0, the transition proba- Again, along the solid (A = 0) and dotted (B = 0)

bility has a logarithmic (cusp) singularity. As a --* 0, lines, the transition probabilities have cusp and step
the two inaccessible regions (where B < 0) broaden singularities. When at (or X) increases the span of

until the central region with B > 0 and A < 0 be- possible final angular momentum, for given angular
comes an elongated line strip lying along the diagonal momentum, increases. Large (small) angular momen-
S= t'. Only elastic and dipole transitions are there- tum transfer is only possible for collisions with large
fore permitted in the limit at - 0. As ot increases to (small) Stark parameters. This behavior is exhibited
unity the classically forbidden zones diminish and the in the quantal/classical probabilities of Fig. 8 as a
collision becomes more and more effective in its abil- function of collision parameter X. The structure in
ity to induce larger angular momentum changes. By Fig. 4 corresponds to one of the structures in Fig. 8. In
appeal to Fig. 6, the structures in Figs. 3 and 5 can be summary, both Figs. 6 and 7 are key to interpretation
fully explained, of Figs. 5 and 8 for the variation of the probabilities

Fig. 7 presents maps corresponding to Fig. 6. The Pee(at) with both f' and X, respectively.
same characteristic regions are now displayed in the
plane of final reduced angular momentum e'/n and 6.3. Quantal-classical correspondence

the Stark parameter at for four values of the initial
reduced angular momentum e/n = 0.071, 0.36, 0.64, This is illustrated by Fig. 9 where the quantal proba-
and 0.93. Again, the classically forbidden regions bilities are greatest in the vicinity of the classical cusp
(gray zones), correspond to the condition B < 0, in solid lines and exponentially decay as they transverse

1.0

0.8

el /n 00>.

0.4 B>O / A>0e'/n0

0.2 071 /n= 0.36

1.0
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0.8
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a a

Fig. 7. Contour plots of the solutions of A = 0 (solid line) and B = 0 (dotted line) for various values of e. In gray zones B < 0 and the
transition is classically forbidden.
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Fig. 8. Quantal and classical probabilities P( )(x) for specific f ---. f' Stark mixing transitions within the n = 28 energy shell as a function
of collision parameter X.
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Fig. 9. Quantal-classical correspondence: variation with f, C' and Stark parameter a of quantal probabilities over the classical accessible
and inaccessible regions. The higher probabilities (darker regions) are confined to the classical cusp (solid line) regions while the smaller
exponentially decreasing probabilities are apparent in the classical inaccessible (dashed line) regions.

past the classical inaccessible (dashed line) regions. Bessel functions Ko,I. The collision takes place in
Figs. 5 and 8 are obtained from various cuts through the YZ-plane of Fig. 1. For atomic hydrogen, 4Ont.
Fig. 9. RutYim(i) so that ,m' n, -1 (f>2/3)

R2nt~nll with m' = m ± 1 and Ejm,Iznm' 2tm -

(f>,/3)R2 tn't±11 with m = m'. The dipole radial
7. Born limit matrix element Rntn'q involving the radial wave-

functions R,,• is fo~X Rn~eRn'e'r3 dr. Hence,

In the limit of weak coupling at all collision ener-

gies, the Born approximation PB Z2 4 (Cf ) .>

P = f I Vif[R(t)]et
"Y1 dt2 nt-nI - 6o 3(21+ 1)

h 2 2 f +- 1 M, x (Rn -- t±l ) 2 [K (P) + K 2)]

\ ao 0

for the probability of f f' = e ± 1 transitions, Z(aovo-2 f,> (Rnf,n'if1 2
which involve an energy defect Efi = hwfi, yields 4 4 3(2•+1) k a0 J

B [2Ze~wfi\ 2 i x fp2 [K2(fi) + Ki(f)] (32)
n \hJ- ] 2f + 1 where ao, vo and 6o are atomic units and the parameter

I/Lm'i2K2 (wfib) fP is wfib/v - Wfi/Wcoll - rcoll/tran, the ratio of thenem 0 collision time to the time Ttran for the transition. When
+Inm' 2 h2 convenient, pB may also be expressed in terms

n+ I K'2 2(•_(31) of the oscillator strength

in terms of the y and z components of the dipole 2f> /Efi R,ne~'f±t 2

matrix element, (On'',z'Irlnez), and the modified fnt,n'f±i = 3 a0
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For Stark mixing collisions, n = n', fp2[Ko(fP) + In order to account approximately for the proba-
' 1 and Rn2 n't±1 = (9n /4)(n > so bility of small energy transfer and by analogy with

that (32) yields Section 7, it can be shown that the Stark Mixing quan-
S2ao22 2 2 tal transition probability (17) becomes modified to

pBne =3Z2  n2(2 (vO)b PNEN'e = (2f' + 1) E(2L + 1)

4 e> n2 (n 2 - t2) * 2  (33) [E L
32+ (-1)n .(N'Y') (Ne)

which is identical, as expected, with the weak-coupling I -,- unLLun

dipole contribution (32), the first term (L = 1) of(19). Ift fL

8. Rydberg states with quantum defects r Ko i K( b)]1 ( 34

x [Ký2 (ýIi-b) + K 2(&ofib/v)] (34)
Rydberg atoms and molecules have quantum defects V

only for states with core penetrating electron orbits The weak coupling limit of (34) is (32). While the

i.e., those with f = 0-2. These low-e Rydberg wave- present theory has been developed for individual

functions, which are assumed known, are expanded ne --* n' transitions in Rydberg atoms, the only

here in terms of a hydrogenic basis set n0m) as, available measurements of Stark Mixing are those
of Sun and MacAdam [6] who provided normal-

RyNe) w(=N) Intm) ized measured fractional populations for Na(28d) --

Na(28f), Na(28g + 28h), Na(28f + 28g + 28h) tran-

and the amplitudes w(Ne) determined. There is a small sitions in Na+-Na(28d) collisions. Fig. 10 illustrates
energy defect Efi = htofi involved in transitions from the general agreement between the measurements and
low e. our corresponding calculations based on (34).

1.0

"* Experiment (28,d) - (28,f+g+h)

0.8 (Sun and MacAdam, 1993)
S0.Theory "••.•••t0.4.6 •r(28,d) (29,1)

.~0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1

V
Vn

Fig. 10. Fractional populations for Na(28d) -- Na(28f), Na(28g + 28h), Na(28f + 28g + 28h) transitions.
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An analytical expression for the classical form factor or impulsive probability Pij(q) for nlmn-*n'l'm
transitions is derived directly from the "phase-space distribution" method [Phys. Rev. A 60, 1053 (1999)] and
is compared with quantal results. Exact universal scaling laws are derived for the classical probability for any
i-.f transition. As n is increased, convergence of the quantal to classical results is obtained and it becomes
even more rapid upon averaging in succession over the in and then the I substates. The classical results reveal
the basic reason for the underlying structure in the variation of Pif with momentum transfer q. Classical form
factors can operate as an effective averaged version of the exact quantal counterpart.
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I. INTRODUCTION zero only for transitions with Am -n-m' - m = 0. This is also
true classically since the projection

State-to-state collisional atomic form factors

L[( 1)= r. (pfXq) -- q

of the final Lf=rxpf angular momentum along the

are important in theoretical analysis of experiments involv- momentum-change direction 4l equals the corresponding pro-

ing initially oriented or aligned target atoms. Equation (1) is jection of the initial Li= rX pi angular momentum.

the probability [1,2] for transitions induced by an impulsive In this paper, the phase-space distribution (PSD) method

perturbation generated, for example, by a short unipolar elec- previously presented [13] for nl-ýn'l' transitions is ex-

tromagnetic pulse [3-5] or by sudden collisions with an tended to provide an analytic expression for the classical

aligned neutral atom [6-10]. The internal momentum Pi of form factor for nlmr-+n'l'm transitions in a Rydberg atom

the target system with wave function qi--= qtfm increases im- for a general electron-core interaction V(r). The derived ex-

pulsively by q to the momentum pf= pi+ q, of the final state pression agrees with that deduced by Bersons et al. [17]

ipfu= ¢ .,,pm' • The form factor (1) is also important to the from a different approach based on the kinematics of an elec-

analysis of high angular momentum I states in cold Rydberg tron moving in an elliptical orbit under Coulomb attraction.
gases [of] and in theories [12] of atomic collisions with An advantage of the present PSD method is that general
Rydberg atomsi classical scaling laws can immediately be derived in trans-

There are several ways to create an unbalanced population parent form. These are then used to explore the convergence

of magnetic substates in target atoms, e.g., by application of of the quantal form factors onto the classical background as

a polarized laser, a weak external static field, or a unidirec- the principal quantum number n is increased. This conver-

tional electromagnetic field pulse. The quantum numbers gence is important for cases when n is very large (n=400 in

(nhn) appropriate to spherical coordinates can then be used half-cycle experiments of Bromage and Stroud [4]) where

to specify the initial and final states and Eq. (1) is used accurate quantal calculations are unfeasible, if not impos-

directly. This is in contrast to experiments [4] with very high sible. Reliance on the use of classical form factors must,
n Rydberg atoms in strong external fields when parabolic therefore, be established and justified for state-to-state tran-

quantum numbers must be used, since angular momentum is sitions, as here.

not a conserved quantity.
Highly oscillatory wave functions for the Rydberg elec- II. PHASE-SPACE DISTRIBUTION METHOD

tron render unfeasible the direct numerical calculation of the The quantal probability (1) for transitions in which mo-
quantal form factor, particularly for n>_40. The classical mentum q is impulsively tr)nfor tro the target particle can
limit is, however, well defined [1] and provides [13], in the be rewritten [1] as
limit of large quantum numbers, good agreement for nl
--+n'l', nl-*n', and n--+n' transitions. Classical [14] and
quanta] [15,16] form factors for transitions between para- p,(rp)pJ(rp+q)drdp
bolic quantum numbers are available. On writing the P =f(q) (2 7rh)3 f (2)ofth gnraororS(22)P1 q
exp(iqr/h) operator in terms of the generators for SO(4,2) p(r,p)drdp
noncompact symmetry group of the hydrogen atom [16], the f
quantal form factor has been derived in an elegant fashion
for nlmn-+n'Im transitions, with A =0 and Am = 0. where quantal densities

When q is taken as the quantization axis of the system, as
in electromagnetic field pulse experiments, Eq. (1) is non- p5q(r,p) = (2 7rh)-3/2•(p)exp(-ip.r/lh) Oj(r) (3)

1050-2947/2002/65(2)/022703(I0)/$20.00 65 022703-1 ©2002 The American Physical Society
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are expressed in terms of the spatial and momentum wave ho1w
functions .j (r) and Obj(p), respectively for the initial i and p' Ct(r,p) = h38(H(r,p)-E)hS(lrXpl-L)
finalf states. This function (3), which is the standard ordered (2 iTh) 3

version of the Wigner PSD, is normalized to unity and may
be interpreted as the quantal PSD. The probability X h S((rX p). z-L), (8)

which is normalized to one particle. The volume of phase
"P7f(q) = (2 irh) J pi(r,p)pj(r,p+ q)drdp (4) space occupied by particles in state n1 is

from all degenerate states i with statistical weights .dE1= d -d f (H(r,p)_E) 8(CrXpL)drdp.

gi= f pi(rp)drdp 
(9)

The degeneracy gn1 is (27rh)- 3 V~,=21. The classical PSD

satisfies detailed balance Pj( q) = Pfi( - q) and is symmetric appropriate to these 21 bound n1 states is then
in i andf

A. Classical distributions p',(r,p)= ( (H(r,p)-E)hS(jrXp P-L). (10)

The volume of phase space occupied by particles moving
under Hamiltonian H=p 2/21n + V(r) in a symmetrical po- The classical PSD appropriate to the degenerate g,=n2
tential V(r) with specified energy E, angular momentum L bound hydrogenic states within level n is similarly

=rx p and Lz, its component along a fixed direction ; of
atomic quantization, in the range dEdLdL. centered about h wn
(E,L,L.) is p'(r,p) - &8(H(r,p) -E). (11)

(2irh/ )3
VgEI,= dEdL dLzf 85(H(r,p)-E)&(Ir× pl-L)

Sf-The classical correspondence with Eq. (2) may now be

X 8((rX p) . ;-Lz)drdp established.

V,,=,,,dndldm. (5) B. Classical-quantal probability correspondence

The number of bound nWn states within volume V"1n is The phase-space volume occupied by those final (n'/')
states that can be accessed only from the initial distribution
of (no states via an impulsive transfer of momentum q at

g,-l- 2n) p%,,,,(r,p)drdp. (6) electronic separation r is

( 2 v h ' --f 11 
_( d E , dL 1  d E f d L ý\fV,,~,1 , p(q) = _ - -- i drdp1t5(H(r,p)

The classical PSD of n/in states is therefore '\dfl dl dn' d1' J

I (dE'~/ L '~(dli,-E)S5(IrxpI-L)}{85(r'-r)8(p'-(p+q))}
S(2dri)d X I d8(H(r',p)-E')
× ,&(I[r× pl - L) 5((r X p) • -Lz), (7) X ,5(l r' Xp'l -L')} dr'dp'. (12)

which, upon integration, yields The number g,,,,,,1' of final (n '') states originating from the
(no states is V,,I,,j,1(21trh) 3. The classical probability for

I(dE A dl (dL\( 8r 3  transitions from one initial state to the band of final states is
gnm=--n3 - T - then the ratio

for the number (6) of bound n/nm states. The angular fre- Pnltn','=gnn' '/gnl= Vn1,n't'/ n1  (13)
quency for bounded radial motion is given, in terms of the
radial action, by wn,--2Trre9H/J. Under the substitutions, of final to initial populations or, alternatively, the ratio of the
dE/dn = hco,, dL/d=h and dLz dm = h, for the spacings overlap phase volume (12) to the initial volume (9). The
between neighboring states, the phase volume is V,,,,, classical probability for nl--n'l' transitions can therefore be
= (21Th) 3 and the number of states gnlm= 1. The corre- expressed in terms of the classical PSD (10) for bound states
sponding nhn one-particle PSD is then by
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p(q= (2rh)f p,(r,p)pc,,,(r,p+q)drdp pc,(r,p)drdp. (14)

Comparison between Eqs. (14) and (2), therefore, estab- in terms of the volume density (16). The probabilities for
lishes directly the classical-quantal correspondence between nl-+nl' and in n-*n' transitions from all degenerate initial
the impulsive probabilities given as the normalized overlap levels are
of the corresponding initial and final PSD's. The probability (E•/h)
for transitions from the degenerate g,,1=2/ initial states i to 1, ,'(q) = - nn Vn1'n',i(q) (18)
the 21' final statesf is the overlap

and
(e2o/h 3)

(2 Th)3f p',(r,p)p',,(rp + q)drdp, 1P.,n,(q) = V,,,,(q), (19)

which also satisfies the relation " q) = T,,t,(-q) respectively, in terms of the corresponding volume densities

for a detailed balance. The classical probability for transi-
tions from the degenerate n2 initial states in level n of hy- Vnf,,(q)= b(H(r,p)-Ei)5(JrxpJ-Li)
drogenic atoms to the n'2 final states in level n' is

X t5(H(r,Jp+ qi)-Ef)b(Jrx (p+ q)l -Lj)drdp
P`()=( h'p'(r,p)pc,(r,p+ q) dr dp. (20)

and

C. State-to-state transition probabilities

The classical probability (form factor) for i=-nln--4f Vnn,(q) j 8(H(r,p)-Ei),5(H(r,Ip+ql)-Ef)drdp,
=-n-n'l'i' transitions is (21)

Pn,1,,,,, 't,' (q) respectively.

1 (dE i dL i dL zd,' d ~f dL~fzf2V,,,,,,~)A datg D. Classical scaling rules
-(2i-l)7 dn dl d- dn" dl1 dm- An advantage of the classical formulation above is that

(15) very useful universal scaling laws for the probabilities can be
derived. On introducing a scaling factor a, such that p'

in terms of the overlapped volume density (of initial and =ap and r'=r/1 2 for hydrogenic systems, then H'
final states), _=-H(p',r') = a 2H(p,r), E'= oa2 E and L'= r'X p'= L/a. It

follows that the continuum PSD

ViMq)= f S(H(r,p)-E 1 )3(JrXpJ -L,) pcELL_(rp)=(2irh)- 3 dEdLdLzS(H-E)S(lrxpI-L)

"X 5(H(r,Ip+qJ)-Ef)i5(Jrx(p+q)J-Lj) X S(L.z-L) (22)

"x &((rx p). i-Li_)bi(r× (p+ q)]. -- Lj-,)drdp,
(16)

which is simply the phase-space overlap integral of 8 func-
tions involving states i=(E1 ,Li,Ljz) and f=(EJ,Lf,Lf.).
This overlap is illustrated in Fig. 1. Evolution to the final-
state manifold is achieved via the allowed phase-space tra- final

jectories indicated.

For hydrogenic states, E = eo/2n 2 ,L=li,L,=inh where initial

e0 is the atomic unit of energy, and the transition probability (n,e,m) r
is obtained upon setting dE/dn=hwo,,=e0 /n 3 , dLdld=h,
and dL /Idm = h to give FIG. 1. Classical form factor is a ratio of two phase-space vol-

= 2h umes: the volume of the region within that part of the initial-state

P3,, (q) 3 N) (17) manifold containing coordinates that can evolve into the final-state
8 ir n 3n' manifold, and the total volume of the initial-state manifold.
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and the associated L. and (L.,L) integrated PSD's, P~EI and Applications
p'r, therefore scale as (A) By choosing a=ni, for example, it can then be

shown that the i--4f symmetric probabilities (30)-(34) writ-
r = F ten as P(i;f;q) satisfy the rules

an invariant for all sets F-(ELLz),(EL),E. For continuum- n•P(njlirm ;nflfnmf;q/ni) -- P( le1 ,ti ; ,f,/Lf;q),

continuum transitions, the symmetric probabilities (35)

Pr, rf(q)=( 2 7rh) 3 f p (r,p)p'f(r,p + q)dr dp n2P(nilimi ;nflf; q/ni) = P( 1,ei ,/&i ; 77f,,f , ; (q),
f Pr, rf i(36)

therefore scale, independently of F, as n179(nili ;nflf;q/n 1) 7( l,e1 ;nrf,ef ;q), (37)

Pr, rf(q)= a3 PF, rf(q')(• " n• •79(ni nf~q/nP)=7( 1 ; f;q) (38)

where q'=aq. Since n=an', l=al' and m= am', the
bound state PSD's (8), (10) and (11) however scale accord- where the parameters are ej=l1j/n, ju=nj/ni and 77f
ing to =nflni. The transition arrays for all ni can, therefore, be

deduced from the array from a single value of ni, e.g., ni
pcm(r,P)a- Pc,,,,,,(r ,P'), (23) 1. The dimensionality of the transition arrays is then re-

duced by one.
p',(r,p)= a - 2p', ,, (r' ,p'), (24) (B) The quasielastic transition arrays (nilim---+nil1 mr)

and (nili-.+nilf) can be scaled similarly by choosing a=11 to
p,(r,p)=a- p,(r ,p'). (25) provide the rules

The probabilities l•P(nilimi;nilfmf;q/li)=P(fli,l,5i;fliyfg5f;q), (39)

Pri> ,,,,,(q) = (2 rih)3 f pr.(r,p)p',I,(r,p+q)drdp l/P(nil,;n~lf;q/l)=rP(/3,,1;f3ivf.Sf;q), (40)

for continuum-bound (recombination) transitions therefore where 13,=njIl,,yf=1 114, and Sjmi/li.

scale as
II1. ANALYTICAL EXPRESSION FOR THE PROBABILITY

PELL,/(q)=PE'L'L', (q), (26) The volume density phase-space integration (16) for state-

to-state transitions is accomplished by noting that the 8 func-
PEL,fl(q)=,aPEL.,,n, ,I'(q'), (27) tions of the initial and final Hamiltonians, Hi=p2 /12,

+ V(r) and Hf= Ip+q12 /2/j+ V(,.), are
9E.,,(q) = a2 'PE,.,,P(q'). (28)

The probabilities for bound-bound transitions b(H,-E,)=(A/p)8(p-[2,i(Ei- V(r))]11 2), (41)

TPf/q)=gjP1f=(2rrh) 3J pi(r,p)p/(r,p+ q)drdp 5(Hf-Ef)=(1_t/pq) Cosx- Ef-H-q2 (42)

(29)
where X is the angle between p and q such that

from the gi initial states scale as
p a3p....,Pz+2p'q+q 2 +vr)H q2

anili3iP Ifni, f(q). = a- 3 .n',',,,'(q'), (30) Hf(p,r) = 2 + V(r)=H+ 2+ -cos X.
J f ~il i'f 2 A /

Pniii ./{f(q) = a-2p -,2P , .,.f','(q'), (31) It now proves extremely advantageous to adopt the spherical

bifocal coordinates ui and uf introduced previously in Ref.
P9,t.,/ 1(q) =a'P0,- I .,'(q'), (32) [18] and represented in Fig. 2. The 3 functions of the angularmomentum are

,Ii'.l~q a'.iII!n'() 3).(ui- Uj) + S(uj- (7#- Ud))
79 in(q)= 0e,79.,ný(q'). (34) 5(jrx pi-Li)= rplcos Uil (43)

Summation over the initial/final substates is implied when 5([rX (p+ q)lU-fL)= )ip+ q(ufl (r Ut))
the corresponding quantum numbers do not appear as rjp+qjjcos Ujl
subscripts. (44)
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S• L2px3 q 1+ 2
Ix LifEi,f= 2 A ri,f f+ V(r) + "-2 (45)

r
as functions only of r for specified energy and angular mo-

o mentum. The phase-space integrations in the volume density

(20) for nl-4n'l' transitions can then be performed directly
A to yield

p.. • + q v,,.,;(q)=- Ri(r)Rf(r) ;si7 + sin+ A (r,q)

P q 16'LrLiLjf dr/r2

FIG. 2. Basic geometry involved in the calculation of the clas- q . Ri(r)Rf/r)

sical state-to-state form factor. X[4L 2L f _ C2 - 112

where the angles uj are determined by cosuj=;.j and r×[

cos[4L2L2 J 1/2]A
+• -C2 (r)4 0 (r,q), (46)

LiLf
sin Uj= L; sin U

rp Ur--•p i p++ q where quantities C, are defined as

The phase-space volume element can then be expressed L2 11/2

[18] in terms of the u i and Uif in Fig. 2 as C .(r)=21 i,[E+Ejf-2V(r)]±+4 Ei-V(r)-_r1

dpdr=[p2dpd(cos O,)dOl1]( 2duiduf rr2dr, 2 1 2

where (Op , q5) are the polar and azimuthal angles of p rela- (P 2+
tive to a fixed set of axis and where A is determined from =1 2[Ri(r)+R r)] 2+ _q .2

p 2+ lp+ ql 2 - q 2 -2plp+ qlcos uicos ifj
cosA 2plp+qlsinuisinuf The step function 0 is unity provided V(r)-Ei-,I(Ef

-Ei- q/2 121)212q 2 and zero otherwise. The region RZ of ra-
Subsequent calculation of Eq. (16) or Eq. (20) depends on dial integration, within which A + are real, is determined by
whether or not there is a fixed direction of space as specified the condition C_(r)•4LiLf/r . The above result (46) is
by an electric or magnetic field, identical with that calculated previously [13] via a different

(a) When no fixed axis is specified, then OP can be iden- integration method. The integrand of Eq. (46) is an ingredi-
tified with the angle X between p and q. Under the con- ent [12] in classical impulsive theories of A -B(nl) colli-
straints (41)-(45), plp+qjlcIcos mijIlcos,1]=ti2RjRf, where the sions when the cross section o-(g,q) for scattering of the

radial speeds R1,f(r) -)= , are determined from energy con- Rydberg electron by A at relative speed g is a function of
servation both g and the momentum q transferred. When o- is a func-

tion only of q, the full integral (46) is then applicable [12].

D (b) For transitions between m sublevels, there is a fixed
direction of atomic quantization and the calculation is more

g 90oo go difficult. The 8 function involving LfZ isA.( QrX× (p+ q)]. z -L./•) = 8(r. (q× ) (Lf- Ljz)), (7

Ui (47)

Vf C where qXz is a fixed direction in space. For the impulse q

B Vi directed along the quantization axis z, then (47) reduces to

Bx• ~ r O5(Lfz-Liz) and only transitions with Ljz=Lf,-•Lz occur.
Moreover, the azimuthal angle Op of p may now rotate freely

FIG. 3. In spherical bifocal coordinates, point A is identified by in the range [0 - Tr] and r, for fixed Uj and Uf, is attached
angles Uj and U- of arcs BA and CA on the unit sphere. The area to the rotated p. With the aid of the spherical bifocal coordi-
element is dS=dUjdUf/sinA, where A is the angle between arcs nates [18], it can be shown (see Fig. 3 as well as the Appen-
BA and CA. dix) that the 5 function of Liz in Eq. (16) reduces to
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[LiLf
5((rX p) .- Lij) =•--•7- sin A -Liz (48)qr (5,4,1) -- (8,2,1)

Under the conditions (41)-(43), it can be expressed as

,5(( r x p ) .-i - i

= -2 L- C( 2( L )( LiLf))

r -- k- I dF-(rk)ldrl (49)

kr4

where the summation includes all roots rk of

F±_-(r;q)=C2 (r)+ ( L" (-i f) 2

r2 . . ......... .........
where the nlhn -n'l'rn transitions occur classically. The six-
fold integration in the probability (17) for nhn-- n'l'mn tran-
sitions resulting from the impulse hq directed along the z 20
axis of atomic quantization then reduces to the following
exact result:
p,,,... .,,,(q) r

0.2 0.3 0.4 0.5 0.6

(21)(21') 21 q
- 2 3 '3 0~~) 3
"7r n n' k IrkRirk)Rf(rk)dF±(rk)/drl' FIG. 4. Contour lines for equation F_(r;q)=O in the q-r

(50) plane. In the upper part of the diagram, classical probability for
transition (n = 5,1= 4,n = 1 )-- (n' = 8,' =2,m' =I). Singularities

where E0 is the atomic unit of energy. This result reduces to arise when two roots rk are equal.
that in Ref. [17] for Coulomb attraction and, when summed
over ni to the earlier result [13] for nl-4n'l' transitions. obtained by using the expansion of the exponential function
There are always two or four roots rk. When two roots ac- in terms of spherical Bessel functions and spherical harmon-
cidentally coalesce, where dF_(r)/l-9r vanishes, the classical ics. Upon integration,
transition probability has a singularity. The basic variation of
the classical form factor (50) with q for the n=5,1=4,m ] n+n' 2

= 1-- 8,2,1 transition in atomic hydrogen is displayed in Fig. (Qq- /
4, together with the q-variation of corresponding roots rk(q), k=1nm.''mq)- X wkdk(--q/a) , (51)
given by the intersection of the surfaces z=F,_(r;q) with
the z = 0 plane. It is seen that cusp singularities are exhibited where the prefactor is
in P,,m-n'1'n(q) when the line q = const is tangential to the
rk(q) curves . This occurs at four places in Fig. 4. The mag- 1 2'+1 (n -1- 1)!
nitude of the probability between the singularities is propor- 1 /21" + 1 n 1- 1)

tional to the number k of contributing radial roots where the 4a (n + 1)!
m transitions occur. The probabilities P,,m,,•,'v,,(q) are, of
course, zero in the classical inaccessible region shown. X P - "/(n'1_ _)2l 2'+[qI-

The probability (50) obeys the following scaling law: X (n'+l')! \nJ n' -a '

n P,7)m-,n'z'm(q/n)-' in terns of a= lIn+ 1/n'. The wk tema is the coefficient of

cf. Eq. (36), which will be used to explore the quantal- the power rk in the expansion of the product of radial poly-
classical convergence as n is increased. nomials

IV. QUANTAL FORM FACTOR n+n'(r/°a) 2R,,/R,,'l' E wkr,

Here, a numerical technique is devised for accurate calcu- k=!+1' +2
lation of the quantal form factor, even for high n - 100. An
analytic expression for the quantal form factor (1) can be where
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3 .0, n-10 I. r n-20

2.0 .. E 2.0

IL Ii
C 1.0 'r 1.0 :

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0nq nq

3 .0 - n : O 3 .0 ,n 4

" 2.0 E 2.0

S1.0 1.0

0.0 0.0
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

nq nq

3.0 n 3.o FIG. 5. Classical (dotted line)
and quantal (solid line) scaled
form factors as a function ofS2.0 2.0
scaled momentum transfer q=nq
for nlm-*n''m transitions. For

1.0 1.0 transitions witb fixed parameters
""1/n =3/10, n'/n= 14/10, O'n

.1 0.0 I = 12/10, and m/n= 1/10 conver-0 5 1.0 1.5 2.0 0.5 10 1.5 2.0 gence is obtained as n is increasednq nq from n=10 to n=100.

3.0 . 3.0
n-70 n-80

2.0 E 2.0

1.0 J 1.0

0.0 0.00.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0nq nq

2.0 E 2.0

0.0 0.00.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
nq nq

I..l (2l+l) 2r \ 1 min(k+/L)
R =,,,,•,=,(r/' t21 n1 I- dk(x)= 1 C') Ci, (k+L)!na (I -x)- k F=0 POLO 1'mLO(2L -- 1)!!

is the polynomial part of the radial hydrogenic wave function fL-k+ 1 L-k
defined in terms of Laguerre polynomials L(')(x). Finally, Xx 2F [ 2  , ,- +lL+3/2;xJ,
the q dependence of the quantal form factor (51) is contained
within the functions dk defined by where C are Clebsch-Gordan coefficients for the addition of
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0.8 0.8

n_5 n-10
0.6 0.6

T 0.4 0.4

0.2 0.2

0.0 • 0.0 .
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

nq nq

0.8 0.8

n-15 In-20
0.6 0.6

0.4 0.4

0.2 0.2 FIG. 6. Classical (dotted line)
and quantal (solid line) symmetric

0.01-, 0. s0aled form factors as a function0.5 1.0 1.5 2.0 o.5 1.0 1.5 2.0
n q n q of scaled momentum transfer q

0. - 0.8=nq for nl-*n'l' transitions. For
fixed parameters l/n= 1/5, n'/n

0.6 n=25 0.6 n.30 7/5, and I'/n = 6/5, convergence
is obtained as n is increased from

T . n=5 to n=40.0.4 . 0.4

0.2 . 0.2

0.0 0.0
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

nq nq

0.8 0.8
h.35 n.40

0.6 0.6

t0.4 0.4

0.2' 0.2

0.0 - 0.0
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

nq nq

angular momenta I and 1'. The resulting angular momentum form factor can be calculated in this way for arbitrary quan-
L is given by L= Il- 'l+ 2s, such that L takes values be- turn numbers (computer time and memory being the only
tween II-l'I and 1+1' with the same parity as 1+1'. The constraints), the results exhibit an increasing number of os-
hypergeometric function 2F1 reduces to a polynomial that cillations, as seen in n> 80 subplots of Fig. 5. The usefulness
obeys a simple recursion relation since either the first or the of the exact, rigorous, quantal results, therefore, becomes
second argument of 2F, is a negative integer. The quantal questionable for such large quantum numbers and only an
form factor has, therefore, a very simple structure as a func- averaging procedure can provide practical quantitative re-
tion of momentum transfer q, being a polynomial divided by sults. The classical form factor has the ability to operate as
(1 +q2/12)n+n'. Unfortunately, factorials of large arguments an effective averaged version of the exact quantal counter-
lead to very large but integer coefficients in the polynomial part, as illustrated in Fig. 5.

expression. Accurate results for n>40 cannot be obtained by
using the usual floating-point machine accuracy. By using V. QUANTAL-CLASSICAL CONVERGENCE
integer and rational number arithmetic, calculation can, how-
ever, be performed in infinite precision if the momentum Quantal-classical correspondence is evident when the
transfer is approximated by a rational number. The result, in classical curve provides the essential framework on which
turn, is obtained as an exact rational number, with an ex- the quantal oscillatory structure is superimposed. In this
tremely large numerator and denominator. Even though the sense, Fig. 5 illustrates the convergence of the scaled quantal
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0.15 0.15

0.10 0.10

= 0.05 C 0.05

0.00 L1 0.00-
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

nq nq

0.15 0.15

n'=8 n'=1o FIG. 7. Classical (dotted line)
0.10 0.10 and quantal (solid line) scaled

form factors as a function of
scaled momentum transfer q=nq

S0.05 0.05 for n--n' transitions. For transi-
tions with constant ratio n'/n= 2,

0.00 0,00 convergence is obtained as n in-
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 creases from n =2 to n =7.

nq nq

0.15 0.15

n'=I12 n'=14

0.10 0.10

a 0.05 C 0.05

0.00 0.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
nq nq

2PQ sults [ 17] is obtained for the special case of atomic hydrogenformn factors n Pn~lnin',l.(q/n) onto the universal classical
curve a ca(Coulombic potential).curve- 1n' ntransitions.Convergence rsa angesn ofrom good qfor The classical background contains two classical inacces-n lm --n 'l'm tra n sitio n s. C o n v e rg e n c e ra n g e s fro m g o o d fo r si l re o n ( a s m l a d l rg m m nt m r n f rs q a d
n as low as 30 to excellent for n -- 80. The oscillations can be sible regions (at small and large momentum transfers q) and
attributed to interference effects between phases (quantal or four singularities attributed to four cases where two roots rk
semiclassical) of the contributions to the amplitude that converge for four values of q. The method also permits the
arises from each location rk. construction of important classical scaling laws obeyed by

Convergence to the classical results is much faster when the form factor for any i---f transition, involving bound or

the results are averaged over all m values, as for the scaled continuum states. Use of these scaling rules then facilitates a
probabilities nP,,1, for nlm--n'1'm transitions, dis- detailed investigation of the rate of convergence of the quan-
played in Fig. 6. Finally, in Fig. 7, the classical and quantal tal results to the classical background, as n is increased. The
probabilities n-'Pn•,,, for the /,mn-averaged transitions con- quantal results at high n are shown to reduce to oscillatory
tain no oscillatory structure and agree for n as low as 2. This structure superimposed on the classical background, as in
result is well known and is the basis for classical descriptions Fig. 5. The rate of this convergence is accelerated upon av-
of n-+n' collisional transitions. eraging, in succession, over the mn substates and then the I

states, as for the nl-+n'l' and n--*n' transitions displayed in

Vl. CONCLUSION Figs. 6 and 7, respectively. Figures 5-7 also illustrate that
classical form factors have the capability to operate as an

Using the PSD formulation [13], the classical-quantal cor- effective and reliable averaged version of its quantal coun-
respondence has been established by showing that the atomic terpart. This is of particular significance to experiments that
form factor (1) for state-to-state transitions in a general one- involve very high values of n=400, as in the half-cycle ex-
electron atom can be written in the generic form (2) where periments of Bromage and Stroud [4].
the quantal and classical distributions are given by Eqs. (3) In summary, the phase-space distribution method [13] has
and (7), respectively. Exact calculations of the derived prob- permitted (a) universal scaling laws for the classical form
ability (50) for nhn---n'l'mn transitions are presented. The factor to be immediately derived in transparent form, (b) the
classical state-to-state form factor (50) is expressed analyti- construction of an analytic expression (50) for the form fac-
cally in terms of the radial electronic locations rk where the tor for state-to-state transitions in a system with general in-
transitions occur. Agreement with previously published re- teraction V(r), and (c) the detailed numerical investigation
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of the convergence of the quantal form factors onto the clas- as in Eq. (48) of the text. From spherical triangle ABC, the
sical background. angle A is determined from

ACKNOWLEDGMENTS cos Oif- Cos Ui Cos U0
cos A - f osU o
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49620-99-1-0277 and NSF Grant No. 01-00890. where

APPENDIX: COMPONENT OF ANGULAR MOMENTUM p2 + I p + q12- q2
ALONG q Cos oi f 2p- p+ql

When the axis z of atomic quantization is along the direc-

tion q of the impulse, then Since p cos ui=luri and jp+ qlcos uf=1.r1. in terms of the ra-
dial speeds, then A is determined from

(rX p). z- .[pX(p+q)]= .- lp+pql sin 0,1cos 0,
q A,= (q ) [p + p+ql2 + 2 rir

where the angles Oif and 0 are depicted in Fig. 3.

From the spherical triangles ABC and ABD, then Under the constraints (41) and (42), then

sin Vi sin Vf sinA 2

sin Uf- sin Ui sin Oil cosA+ = -C+(r),

and
where

cos 0= sin Uisin Vi,

respectively, so that C_(r) = 21L[Ei+ Ef- 2 V(r)] ± 22irf- q 2

(rXp).;= -rIp+ql sinUisinUgfsinA. =214Ei+Ef-2V(r)1±4/- Ej- -

Since sin U,=Li/rp and sin Us=L.Irjp+qj, then × El-V(r)-_ J _q2,

(rx p).z= qr / , as in Eq. (46) of the text.
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Atoms in high-(n,e) states formed in cold Rydberg plasmas decay to the ground state in a succession of
radiative transitions populating intermediate excited states. A classical treatment presents radiative cascade in
a physically transparent way and reveals the "trajectory" in n( space obeyed by the cascade, scaling rules, and
other aspects hidden within the quantal approach. Quantal-classical correspondence in radiative decay is
directly demonstrated. Classical transition probabilities are also presented and are in excellent agreement with
quantal transition probabilities, even for moderate quantum numbers.

DOI: 10.1103/PhysRevA.68.030502 PACS number(s): 32.70.Cs, 31.15.Gy, 32.30.Je, 32.80.Rm

Cold Rydberg plasmas, wherein electrons and ions coexist The instantaneous classical power of photon emission
with atoms R(nl) in highly excited Rydberg states n,e have from an atom with energy E is given by the Larmor formula
recently been produced by direct laser excitation [1] or ion- [8,9]
ization [2] of atoms initially prepared at submillikelvin tem-
peratures. In the ATRAP experiment at CERN, levels n 2 e2  dE
>_50 of antihydrogen at 4 K are observed [3]. In these three I= - - -2 Fri, (1)
experiments, the basic processes [4] include three-body re-

combination which mainly produces Rydberg or anti- where F is the (Abraham-Lorentz) force [8] exerted on the
Rydberg atoms in high-e- n - 1 circular states, which have
very long lifetimes r,,ef- n3 f 2 towards spontaneous radiative atom during photoemission. On assuming that F is small

decay. Stark mixing [5] by the electric microfields and colli- compared with the Coulomb attraction, then on averaging
sion with ultraslow ions then produce a redistribution of the over the electronic period T,,=21Tn 3 Ta, where rT , is the

angular momentum towards much lower e, which, because au of time, and following Refs. [8,9], the secular rate of
of the increased electrodynamical e - - R + interaction at the change in quantum number n is given by
pericenter of the highly eccentric orbits, radiate -n 2 times
faster than the high-e states. Theoretical analysis of ultracold dn A0 _ I(3e
Rydberg plasmas involves the distribution of Rydberg atoms dt = 1- , (2)
over both n and C so that the standard collisional-radiative

models [6] must be extended. Such an inclusion increases where A 0= a3 s/'r,= 1.6065X 101 s- 1 is the characteristic
dramatically the computational and numerical difficulties, F a

since the dimension of the required array increases from n 2 rate for radiative processes and aFS is the fine-structure con-

to n4, enough to render direct calculation unfeasible and stant. The secular rate of change in angular momentum L

physical interpretation intractable. Moreover, the well-known = lh is obtained upon similar averaging [8,9] as

Gordon formula [7] for the required radiative transition prob- df 2 A 0
abilities becomes numerically unstable for n > 50, even with - (3)
special numerical algorithms and substantial numerical ef- dt 3 n3f2

fort. Some physical transparency is therefore required.
In this paper, we investigate the energy route preferred in A classical estimate [10] of the characteristic time r,,e of

radiative cascade of an excited atom in an initially prepared radiative decay to all lower n, f- 1 states is obtained by
Rydberg level nf. In so doing, we advance a remarkably equating (3) with - 1/•re to yield r,,c=93.37n 302 ps. Many
accurate classical theory of the subsequent trajectory in nf orbits occur during radiative decay, since this radiative decay
space produced by radiative cascade and illustrate a powerful time r,,f> T,, the orbital period.
classical-quantal correspondence at work. A classical treat- Combining Eqs. (2) and (3) yields
ment of the transition probability (Einstein A coefficient) is
also provided. It is worth noting that classical theory of ra- dn 3 n3 IC2)(
diative decay was not vigorously pursued after 1930, pre- d 23 (4)
sumably due to its prediction that the accelerating spiraling
electron will ultimately pass through the Coulomb force cen- Since Eq. (4) is always positive, both n and f change in the
ter, an untenable feature evident for those lowest-n and -e same direction, in accord with the quantal propensity rule
states, the only states then accessible to experimental obser- [6]. The solution of Eq. (4) yields n 2= f 2/(1 - Cf 3), where
vation. For high-n states, however, we shall show that the the quantity
classical picture developed here works remarkably well, even
for states with f/n>•0.2 which includes the majority of Ry- 1 -C2/n2 1 -E 2/n 2

dberg states created in the ultracold Rydberg plasmas re- C(no,f 0)= 0 (5)
cently observed [1-3]. 0

1050-2947/2003/68(3)/030502(4)/$20.00 68 030502-1 ©2003 The American Physical Society
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FIG. 1. (Color online) "Trajectories" in (n,() space for initial 60
states 10= 1,11,21,31,41,51,61,71 within the no=80 shell. Dots cor- ,
respond to a change of one unit of angular-momentum quantum 40
number (Af = - 1). The dashed diagonal line (= n represents tran- 0..2 10 0
sitions between circular states. 20 00 80

40

is determined by the initial state no0 o and remains conserved 20 e
throughout the radiative cascade process. The nf states sub- FIG. 2. (Color online) The steady-state quantal distribution P,,f
sequently populated are illustrated in Fig. I where e succes- of ne states populated by the radiative cascade originating from a
sively decreases by one unit. Each trajectory is characterized source maintained at level no= 100, f0 55. The quantal ridge fol-
by different values of C(no,fo), which can vary between 0, lows the prescribed classical trajectory (5).
for circular (fo=no) states, and 1, for eccentric (f 0 - 1)
high-no states. Circular states decay along the diagonal line (2n-,)A 0  2 24 n2 (n - 1)21
(C=0) of Fig. 1 as (n,f=n)-(n-l,'=n-1)--o(n An,n _ (2n-1)n° 4 2(1)8)
-2,f"=n-2), .. , while states with lower angular mo- 3--(n-1)2[ (2n- |.(

menturn (and C>0) will decay by making increasingly
larger jumps The set of coupled rate equations for the time-dependent

quantal evolution of population p~e(t) involved in the cas-
e- 1 cade from the initially populated level (n0 ,f 0 ) are

dt n I n+l

from level n in the f-- f - I transition. Direct calculation of no
the corresponding quantal expression for the averaged + E pnei(t)Aneilne
change in the principle quantum number n' =n+

( -1n-I n-1
An/q= I (n-nTt)Anr,'7n•- Anf--n'•f-I -- pne¢(t) 1n- -+ Ya Anf-•n'+l

n = =e rtt=f, f n'= C

in terms of probabilities Ai-j for i-j transitions show The steady-state solution, subject to the constant source
agreement with the classical prediction (6), even for moder- represented as Pnofl?(t) = 1 at all times, is shown in Figs. 2
ate n -'20, over an extensive range of f. and 3. It is seen that the quantal distribution over the ne

Thus, the Bohr correspondence (which predicts An = 1 plane exhibits (a) a sharp ridge which follows the deduced
transitions along the diagonal line of circular states) is gen- classical trajectory (5) and is (b) skewed (Fig. 3) towards the
eralized via Eq. (6) for decay of general noncircular states. left indicating the predominance of E-4-1 downwardFigure 1ealsoiclearlynillustraesdthataany initial1orbitwwil
Figure I also clearly illustrates that any initial orbit will transitions, in accord with a propensity rule [7]. The quantal-
eventually become increasingly circular during the cascade classical correspondence illustrated by Figs. 2 and 3 may be
process. The coupled equations (2) and (3) can be solved inthe uraionT o n0 ~-~ne tan- explained as follows. The quantal rate that energy Eif
analytic form to provide the duration T- of n=It-n,f tran- Whjf is radiated is the power [7]
sitions as

4e2

hof5 n5 Iif =hoifA if=4 e 2 (Ef/h)4Jri12, (9)
AO0' 0 2777' ()3C3

.2 n where rif is the dipole electronic matrix element•" 2It is worth noting that Eq. (7) predicts A 0o= 3 n5/2 for tran- ( eilff rI),,.ml). Since ri.= -toifray exactly, when exact

sitions between circular states, in agreement with the high n wave functions #i.f are used, the total power radiated into all
limit of the calculated quantal transition rate lower states is
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0 20 40 60 80 100 red lines] radial matrix elements as a function of scaled changee s/n=(n-n')/n for various initial-state ratios C/n from 0.9 to 0.1

FIG. 3. (Color online) Two-dimensional representation of Fig. 2 in steps of 0.1. The ordinate axis uses a base-10 logarithm.
but with quantal isodistributions represented by lines with magni-
tudes detennined by each color code on the right hand side. The When compared with Eq. (9), Eq. (12) provides the Bohr
white line is the classical ridge (5). [11]-Van Vleck [12] correspondence principle, which equates

the power of line spectra between equally spaced levels Eif

4 e 2  =slho) (the Bohr frequency theorem [11]) with the power
i=- -E 1i ;l 2. associated with the sth harmonic of the classical motion of

3 C3 fstate i. The correspondence also holds provided rif=rs(i),

where s1l=nf--ni,s 2 = f--,i,s 3 =mf-min, which is the
The sum 2a,,rf fl-= (i is dominated by a symmetric band Heisenberg form [13] of a correspondence principle for ma-
of states centered about the highly excited level i. Then trix elements. Since r is real, r,(i)=r_,(i), as also assumed

f ½iIi J2 1 ) and within the derivation of Eq. (10). Moreover, ryf-rs(i) and

2 e 2  r*- rS(f), where i orf denote taking the parameters for the
1=- -(-2) (10) initial or final orbits, respectively. For i=niet-f=n1+_± 1

3 = r c3 , transitions, calculation of the Fourier coefficients r5(j) in Eq.
(11) for the initial and final classical orbits J = i,f then pro-

in agreement with Lannor's theorem (1), from which Eqs. vides the new correspondence
(5) and (6) followed upon a corresponding classical average.
The present classical approach based on Eq. (1) is therefore ___>(

expected to be valid for n and C large enough that radiative Irs2 i 2f+*1R
decay is confined to within a band of neighboring levels. It is
therefore expected to be inadequate for low-C core penetrat- which is symmetrical with respect to the "classical" radial
ing electrons where the stronger interactions induce larger matrix elements
quantum jumps to levels outside the band. Based on the suc- ai (( C I(S6j)
cess that the quantal ridge in Figs. 2 and 3 follows the energy Rj(s) = 2s 1-Af-Ij. (SEf) - 1+Af ij
route classically prescribed by Fig. 1, it is now worthwhile . " fl1 /
exploring classical rates for i-f transitions between two H 2 e a2- 2-1/2, (n--nf)>0, At'=Here ai-njao,cj=(l-fjnj) ,s=(n
discrete levels. The position r of the electron in initial state J a
iýn-n- and executing bounded periodic motion with con- Is. Since

Ri(s)Rf(s) in Eq. (13) is our classical representation of thestant angular frequency w can be Fourier decomposed as standard [7] quantal radial matrix element R nf+_, then

r(i;0, O,0)=J r,(i)expi(siO+s 2_tI+s 33), (11) under radial correspondence alone, our classical version of
the A coefficient for i-4f transitions in Eq. (9) is, therefore,

where the sum is over all sf{s 1 ' s2,s 3}, where 0= wt+ 8 is 4Ao f n- n23

the angular position of the particle in the orbital plane whose A, f -nff- 3 2f+1 2n 2 /n2 R.i(s)Rf(s)' (14)

orientation is determined by the constant Euler angles (E) -1 /

=cos I m/l, , 111). This permits the time average (Wr,, of where only the Heisenberg correspondence rif-rs(i) and
the Larmor power (1) to be decomposed as 7s,,/1, where r*r*_ 5 (f) is used. Expressions (13) and (14), symmetric in
each component the initial and final states, are proved to be valid and much

4 e 2 more accurate over a much more extensive range of s= (ni

= - (SI h (01h)4r (12 -nf) than those obtained [14] from the assumption in Eq.
c3 ( (12) that Irif21-R(s)212. This distinction, as derived in the
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FIG. 6. (Color online) As in Fig. 5, but for [200,C-n',(#
FIG. 5. (Color online) Quantal (blue dots) and classical [(13), + 1)] transitions for C/n=0.1-0.5.

red lines] transition rates A200oe-,e-1 times T
n,n-n-1,n-1

=3n5/2Ao, as a function of (n-n')/n for various initial scaled as illustrated also in Figs. 2 and 3. The extent of quantal-
angular-momentum values C/n from 0.9 to 0.2 in steps of 0.1. classical agreement shown in Figs. 2-6 is representative for

all n•>10. The present classical radiative rates are much
new correspondence (14) is important, particularly for inter- al uaTe creclantiral counterpare s.

medite nd lrgevalus o s hen he pproimaion easier to evaluate correctly than their quantal counterparts.
mediate and large values of s when the approximation In summary, the classical treatment of radiative decay out-
Ri(s) g Re(s) breaks down, being valid only for s 1,2,3. lined here has proven to be accurate, particularly for Rydberg
Figure 4 for n n' (C - 12) transitions shows that the quan- states with C/n '0.1 (preponderant in recombination) and
tal and classical radial matrix elements, Rn,,,,I are in ex- has provided an accurate yet physically transparent picture of
cellent agreement over an extensive range in s = n - n' as C radiative cascade of Rydberg states. The deduced trajectory
is varied from 0.9n to 0.ln. Figure 4 illustrates also that the in nf space obeyed by radiative cascade origination from a
stronger e-ion interaction at the pericenter for low C orbits constant source is confirmed by quantal calculation. The de-
induces transitions over a broader range of s, in contrast to duced classical invariant (5) has, as yet, no quantal analog,
transitions with small s characteristic of near circular (higher indicating a hidden symmetry. The theory is further devel-
C) orbits. oped, via Eq. (13) in Eq. (9), to provide here a symmetrized

The quantal and classical transition probabilities are com- new version of the power correspondence (12) and a classi-
pared in Figs. 5 and 6 for I-T- 1 downward transitions. cal version (14) of Einstein transition rates, to a high degree
The agreement is excellent, particularly for large angular of accuracy. It is particularly appropriate for the analysis of
momenta, circular states, in accord with Bohr's An= 1 cor- Rydberg plasmas over (n,f) and for the proposed deactiva-
respondence. It is less good for elongated states with low tion of the high n-_50 states in the ATRAP experiment by
angular momenta (which favor larger n changes) because the laser deexcitation methods, subjects of intense current theo-
equally spaced levels approximation within the Heisenberg retical and experimental interest.
correspondence becomes less accurate and because the E This work was supported by AFOSR Grant No. 49620-
factor in Eq. (14) amplifies any error in Ri,(s). Note that the 02-1-0338 and NSF Grant No. 01-00890 and by a NSF Grant
probabilities for EC-4 1 downward transitions are much to ITAMP at the Harvard University-Smithsonian Astro-
higher by a factor of 102 than those for C -- C + 1 transitions, physical Observatory.
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Abstract
The most attractive and the most repulsive potential-energy curves for
interaction between two Rydberg atoms in a broad superposition of internal
angular momentum states are studied. The extreme Stark states have the largest
dipole moments and provide the dominant contribution to the interaction which
is then expressed as a long-range expansion involving the permanent multipole
moments Qj of each polar atom. Analytical expressions are obtained for all
Qj associated with principal quantum number n of H(n) and permit the long-
range expansion for the H(n)-H(n') first-order interaction to be explicitly
expressed analytically in terms of n, n' and internuclear distance R. Possible
quasi-molecular formation is investigated. Direct calculations show that the
H(n = 2)-H(n' = 2) interaction is capable of supporting 47 bound vibrational
levels. As n increases, the long-range interaction becomes increasingly
attractive so that molecular formation at large internuclear distances is expected
to be scarcely possible for these extreme Stark levels.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A new branch of atomic physics-the interactions, dynamics and collisions in ultracold
(T << 1 K) systems-has naturally evolved from recent advances in the cooling and trapping
of neutral ga.ses. Giant helium dimer molecules have been recently produced [1] via photo-
association of ultracold metastable atoms. Such long-range molecules attract considerable
attention [1-4], with possible application to quantum computing [5] and dipole blockade [6].
The long-range molecules considered up to now are those formed from atoms [1-4] with low-e
electron-core penetrating states, as He(23S,) and He(2 3P0), appropriate to photo-association
experiments.

We now consider the interaction between two Rydberg atoms with internal electronic
angular momentum spread over a broad distribution of f values, characteristic of Rydberg
atoms placed in a weak electric field. Three-body electron-ion recombination produces
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Rydberg atoms mainly in high f-states. Subsequent Stark mixing [7, 8] within the Rydberg
manifold by collision with ions provides Rydberg atoms with a broad superposition of e
states. The relative number of states which do not penetrate the non-Coulomb core with
consequent vanishingly small quantum defects increases with n1. They remain degenerate,
just as for atomic hydrogen, being easily intermixed [7, 8] within the n-manifold even by the
slightest perturbations by microfields or ion impact. These states are sufficiently flexible that
a permanent dipole and higher permanent multipoles Qj are created quite easily out of the
large number -itn2 of degenerate angular momentum states C within the energy shell. These
Rydberg atoms can be called 'polar' because they possess permanent multipole moments.

In this paper, we present the physics of the long-range interaction between these polar
Rydberg atoms and investigate the possible formation of long-range molecules from two
Rydberg atoms with the same (or different) principal quantum numbers n, but with a broad
superposition of many degenerate (non-core-penetrating) angular momentum states e. In the
long-range interaction between two Rydberg atoms, the degeneracy of the energy shells has
profound and decisive consequences. Its account represents a challenging quantum mechanical
problem which has not received any previous theoretical attention. Our aim here is to first
identify the physics and mechanism of the interaction between two degenerate Rydberg atoms.
We then obtain analytical expressions for the various multipoles Qj as a function of n which
allows the coefficients of the long-range expansion to be calculated purely in algebraic terms.
The long-range interactions so determined are of basic interest in this rapidly evolving field and
will also be useful for various processes involving ultracold Rydberg atoms e.g., for Penning
ionization, an important process required to sustain ultracold Rydberg plasmas.

2. Theory

Interaction between atoms in low n 2, 3 levels can be calculated [4] by conventional ab initio
numerical techniques, but for highly excited atoms n >> 1, the treatment becomes prohibitively
difficult and impractical. Binding of the purely long-range molecule He(2 3S,)-He(23p0)
depends only on the long-range part of the atom-atom interaction, and the internuclear distance
is always large compared with ordinary bond lengths [1]. The physically important region for
the present Rydberg-Rydberg interaction is also over large nuclear separations R, dominated
by long-range interactions which permit the use of a two-centre multipole expansion. The
leading term is the dipole-dipole interaction Vdd - R- 3 and is given byfirst-order degenerate
perturbation theory [9, 10]. The origin of this interaction is quite different from the weaker
resonant excitation-transfer interaction [11] between an excited and unexcited atom of the
same species, say in the s and p states, which also has the -R- 3 dependence. The next
non-vanishing multipole contribution to the interaction also appears infirst-order degenerate
perturbation theory and is the electrostatic quadrupole-quadrupole interaction Vqq and the
dipole-octupole interaction Vdo, both of which -R- 5. In the absence of degeneracy, the
interaction between two atoms in the same isolated state is the much weaker and shorter
range induced dipole-induced dipole (van der Waals) potential -"R-6 which appears only in
second-order perturbation theory. The aim here is now to calculate analytically the first-order
interaction in terms of all the permanent multipoles associated with level n.

2.1. Multipole expansion

The interaction operator
1' 1 1 1 1

R r+R r1B r12 r2A
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2

0

A R B

Figure 1. Two-centre coordinate system: two nuclei (A, B) and two electrons (1, 2).

between two atoms (figure 1) is given, at large separation R between the nuclei A and B located
along the z-axis, by the multipole expansion [12]

V(R2, rFA, r 2B) & L(
RLr+L2+ lA)QL 2 M1

L1 .L-=I M=-L.

where the multipole operator for each atom with composite electronic coordinates r relative
to each nucleus is

LM(r)= 4,, 2-1-2-rL YLM(•)' (2)

and where

(LI + L2)!
fLIL 2M = [(LI + M)!(L 1 - M)!(L 2 + M)!(L 2 - M)!]112  (3)

The phase factor (- 1 )L- included here arises [12] from the A -) B direction of R joining
the nuclei, as in figure 1. Even with neglect of electron spin for the generic case of two
interacting hydrogen atoms, H(n)-H(n), with equal principal quantum numbers n, there are
as many as i 4 degenerate states within this (n, n} manifold to be perturbed by the atom-atom
interaction. As the internuclear distance R decreases from infinity, the degeneracy is first
lifted by the dipole-dipole interaction operator and the dense bundle of initially degenerate
electronic states broadens. These quasi-continuous energy bands, similar to the bands formed
in periodic systems, originate from the large number of angular momentum states available
in each atom. In general, highly correlated quasi-molecular states -I'(rlA, r 2 B) emerge with
the electron coordinates r1A and r 28 quite intricately entangled [101. The situation, however,
becomes drastically simplified in the i >> I case, for those states in the manifold which provide
the strongest attraction or repulsion. These are given by a simple product of two one-electron
orbitals, each of which is just the most elongated Stark (parabolic) state 00(,,-)00(r) with the
greatest dipole moment d = 3n(n - 1)/2. Maximum interaction is ensured when both atomic
dipoles are aligned along the molecular axis R, so that

'I'dd(rltA, r 2 B) = O(1c_,)oo(r1A) Vi(n_1)00(r2B), (4)

where SI,,m,,m(r) is the wavefunction (table 1) for the set of parabolic quantum numbers
({a, 1t 2 , M), with n = nt + n2 + Iml + l and with dipole moment d = 3n(nj - n2)/2. The
atomic wavefunctions in (4) are eigenstates of the dipole moments r1a and r2B. The deviation
of (4) from being an eigenfunction of the dipole-dipole operator,

9dd = [r] A" r2B -
3 (rtA R)(r2B° lR)] R3  (5)

is measured by the mean square deviation

((AsV) 2 ) = ('I•ddIl'Pdd) - (\PddlV dd) 2 . (6)
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Figure 2. Wavefunctions for the two most elongated Stark orbitals, V'(,,-1o00(r ± R,./2) with
it = 10, aligned along internuclear axis R. Each orbital is centred at its own nucleus with typical
separation R,, (cf section 6). The orbital overlap is strongly suppressed and is maximum at the
arrow.

Table 1. Four bases [81 useful for describing the quantal states of the hydrogen atom.

Quantum Complete set of
Basis numbers commuting observable Origin

Spherical Intnm)o H1o, L
2

, L3  Standard for spherical coordinates; describes correctly the states
of the field-free atom.

Parabolic Intn 2mn)p H1 , H2, L 3  Separation of Hamiltonian H = H1 + H2 in
parabolic coordinates, = r + z, q = r - z,

tan p = y/x; = nI +n2 + IMnl + 1.
Stark Inkmn)s H0, A3 , Li Parabolic basis; describes the Stark states

for small electric fields E = £k, diagonalizes the

interaction eEz and gives energy

shifts AE = 3nkeE = -d. - where k = ut -n

is the electric quantum number and d is the vector dipole.
Algebraic Jnmlml2)A Ho, J1 3, J23  The two rotation groups in which the dynamic

symmetry group SO(4) = SO(3) 0 SO(3) is decomposed;
the equivalent angular momentum for both SO(3) representation is
j = (n - 1)/2; nl = (in + k)/2 and M2 = (ti - k)/2.

Direct numerical integration yields the dispersion in Vdd to be ((A V) 2)t /2 = A(n)/R 3 where
A = 6, 30, 152 and 485 for it = 1, 2, 3 and 4, respectively. At R = 4n2, the corresponding
variances are then (38.2, 7.32, 3.26, 1.85) x 10-3, respectively. Therefore (4) becomes a better
eigenfunction of the dipole-dipole operator (5) with increasing n provided R also increases as
n72 with the result that the variance tends to zero as n-2. See also [10] for a similar conclusion.
The wavefunction (4) is shown in ligure 2.

From the four interesting basis sets in table 1 appropriate for the one electron hydrogen-
like atom, it is sometimes convenient to adopt the equivalent SO(3) ® SO(3) algebraic basis

tnt1Mm 2) where mnt and in 2 are projections on the Z-axis of the two angular momentum
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operators JI and J2, given by
J1 = 1(L+ A), J2 = ½ (L - A), (7)

where A is the electronic Runge-Lenz vector. Then J2  j2 j(j + 1) = (n2  1) with

j (n - 1). This basis set permits exact quantal and classical solutions to be obtained [8] for
collisional e-mixing by the ion-dipole interaction in ion-Rydberg atom collisions. It is also
valuable for expressing operators such as the dipole, quadrupole and octupole by equivalent
operators [14] involving JI.2 so that all matrix elements can be evaluated algebraically.

The Stark (parallel and anti-parallel) states most stretched along the positive and negative
directions of the Z-axis are respectively,

*(,,n_)oo(rtA) -1+) 1n, j, -j), (8)

Vfo(,,-l)o(r2B) HI- = In, -j, j), (9)

in the parabolic and algebraic basis (table 1), respectively. Atom A in any of the states
ju) = 1±) has expectation value,

Q (aL= LMI) = (0IOLOI1)CMo, (10)

where the multipole operator (2) is now

_LO = rLpL(p .2). (11)

The expectation values Q j, Q2, Q3 and Q4 are the strengths of the dipole, quadrupole, octupole
and hexadecapole, respectively. The average of interaction (1) over states Ia)A of atom A(n)
and I/3)B of atom B(nW),

V(R) =B (•IA (alV(Ri, rA, r 2 B)Ia)A L)n, (12)

is first order and can now be expanded in terms of the averaged multipoles Q, for each atom
in the form

N N' N N' QAQB

V(R)-----FL E Vii = FZ(-1)j(/+ j)! 'A , (13)
i=1 j=I i=1 j=l

where N = 2(n - 1) and N' = 2(n' - 1). Multipoles higher than QA and Q',, all vanish, due
to angular momenta considerations. The interaction of the dipole QA of A with the various
(j = 1,2 ... , 5) multipoles Q' of B is

5 2 3 aB 4 t 5 6 mBeI = Vj QA - QB - QAQB • A B + SQAQB QAQB

1: T3I IT41 T 1 3  T6 R 1 4  R7_ 1 5.
j=1

The interaction of the quadrupole (QA) of A with the (j = 1,2, 3, 4)-multipoles of B is
4 3 A 6 QAQB 10 15

V2 ~ ~ A~ = _TQA QB QA QB
v2= v2j = Q + o o 2  T 6  2 3 T72 4.

j=l

The interaction between the octupole (i = 3) of A and the (j = 1,2, 3)-multipoles of B is
3 4QA + 10 QA QB 20 QAV3= 3 j = _T•sQ.A QB T6 - 3 2 T7- 3 3 -

j='

The interaction between the i = 4 multipole of A and the dipole and quadrupole of B is

2 5 A B 15 QA&V4 "E Y V4 j 6 Q --R 4 QOI + j"Q4 2' .

j=1
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Figure 3. Two aligned linear charge distributions (ql, q2) and (q;, q') with arbitrary origins 0
and 0' separated by distance R.

The interaction between the i = 5 multipole of A and the dipole of B is

S= 

V51 = _ QA QR B

The full long-range multipole-multipole expansion (13) of the first-order interaction (12) to
O(R- 8 ) is therefore

V(R) 2 QA 3  
QA Q 2  A B

-�3 B 1 Q0B) '[2(0 1 0Q3 + QAoI) 3Q0 QB
F, 1 2 T. 3 31

T6 [(Q, _- QA Q) 2(QAQ _ - QA)QBj R- 6(QtAQsB +QAQB

5 (QA Q0 + QA 0Q) + 20QB03] + O(R-8)• (14)

Higher-order terms involve inclusion of multipoles higher than Q5. It is apparent from the
structure of (14) that symmetry considerations may reduce the overall number of terms in the
expansion. For parallel aligned identical (A = B) linear systems, QA = Q' and the series
(14) does not contain even powers of l/R. For anti-parallel aligned identical linear systems,
QA = I) Qý and the series (14) contains all powers of I /R.

2.2. Classical analogy

Consider the two linear charge distributions displayed in figure 3. From electrostatics, the
classical long-range interaction between them can be written as,

V(R) + QoQo + QoQ' - QtQo + QoQ - 2QtQ' +Q2Q'

R R2 R 3

-QoQ- 3Q1Q +3Q2Q' - Q3Qo
+ R4

QoQ' - 40QI' +6Q2Q' - 4Q30Qi + Q4 Qo+
+ R5**, (15)

where Q, = qtz" + (-1)'q 2z" are the various classical multipoles for each distribution.
For equal and opposite charges, q, = -q2 = q, the monopole Q0 is zero and (14) and
(15) are formally identical. This is because the quantal interaction is electrostatic in origin
and includes no second-order induced effects between the distributions. For parallel aligned
identical systems, symmetry considerations eliminate terms in even powers of 1/R, as with
the quantal case (14). For zero monopole, only the dipole Q, is independent of the origin 0.
In general, the first non-zero multipole is origin independent. When 0 is taken at the centre
of the charge distribution, then all even multipoles Q2, vanish. When 0 is located at the
nuclear charge q, as in figure 1, all the multipoles are non-zero. Also note that the quadrupole-
quadrupole R- 5 -term is always repulsive, classically and quantally.
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3. Calculation of multipole matrix elements

The multipoles of interest are [13],

O-t;o I r LyLo(r) = L! q pq~r "4
!L L2L + 1 r L() L.qt !q!r! ( )

2q+r=L

Calculation of the associated matrix elements for the atomic multipoles is best performed
with parabolic coordinates (" = r + z. il = r - z, ýp = arctan y/x) of table 1. The multipole
operator then simplifies to

• L -- 'L-st

L O = ý- E ( _ ; !2 •sI L -v
.2= (L- s)!2s!2•

The most stretched Stark states are now,
e-Ct +ij/2n

1+) = u,,-i 0(•, I r) = u,,-I( )uo( ) = eL '-( /n) '

where L,(x) are Laguerre polynomials. The matrix elements of ý'qr are

(+I•'/+) u,,_1(•')2•i/ d l dr/do = [fi!J,(_I + (f + '

4 2 .n1 (i I!.1]
where the elementary integrals J, as defined by Bethe and Salpeter [15], are

I (a = I e-:p P+C[L" (p)]2 dp.

For the case of interest here, the matrix elements of the multipole operators of any order for
the 1+) states are therefore,

jL-t L (--1)L-sL!2 S)
(+ +) ( - s + ),], (6)

Q(+ I E2 s! 2 (L - +s)! (I'O +J(L(1
S=O

where J')_o reduces to the analytical expression

( 1) r!(a - r)!((X + r - a)! (17)

r=min(0.a-X)

A similar calculation provides the matrix elements over I-) states as

QL(-) = (-IQLO- = (-I)LQL(+). (18)

The matrix elements between all the Stark states of the algebraic basis (table 1) can also be
calculated by equivalent operator techniques [14].

4. Analytical expressions for the permanent multipoles QL

Specific calculations are now required to investigate the attractive/repulsive nature of potential
V(R) when atomic electrons are in particular quantum states. We are interested in the
case where both electrons are in the most stretched Stark states 14-) aligned along the
internuclear z-axis, both in the same direction [V (R) = V., _(R)] or in opposite directions
[V(R) =_ V,--(R)]. These one-electron states are building blocks of the quasi-molecular
state (4). We will then trace how the interaction responds to the successive introduction of the
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quadrupole, octupole and higher multipoles into the long-range expansion (14). The input for
this study are the permanent multipoles QL of individual atoms in the extreme Stark stretched
states 1±) of H(n). These are explicitly calculated as,

Qo(+) +QO(-) = 1,
3l 37

at(+) =-Q1(-) 21 n (n- 1) 2 n-

2 - 5 4Q2(+) = +Q2(-) = 2n(n - 1)(5n - 7) - 54t
22f~f 2"
523 356

0+)= *-Q3(-) = .n n(n - 1)(n - 2)(7n - 9) • '-n

42 5 11 _1 223 0Q5(+) = -Q5(- = 1n( )(nz - 2)(it - 3)(112 - 39n + 30) - 216 n0

Q6(+) = +Q6(-) 1 -n 6 (n - 1)(n - 2)(n - 3)

x (143n3 _-9902 + 2077n - 1270) 429 1112,

16

Q7(+) = -Q7(-) = 9n 7(n - 1)(n - 2)(n - 3)(n - 4)

2 6435 14
x (715n' - 4862n2 + 9977n - 5950) -.- n , 1

Q8(+) = +Q8(-) = 1-0 1(n - 1)(n - 2)(it - 3)((n - 4)
12155 1

x (243 =n4 -- 27 170(n + 105 677-,2 - 165 946)n + 85848) 1 16

229Q9(+ = -9(-)= 22-• (n1 - 1)(nl - 2)(n - 3)(nl - 4)(nl - 5)

x (4199n 4 -46410,n3+ 178165n2- 275730n + 140616) 46189 18,

Qlo(+) = +Q0o(-) = 12 nl°(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)

x (29 393n 5 - 482 885,n4 + 298 4605n3 - 855 8875n,2 + 111710 82n
88 179 20

-5158440)--8' n
256

The multipoles Qj (+) for parallel states 1+) are all positive, while only the odd multipoles
Q0 (-) for anti-parallel states I-) are negative. Higher permanent multipoles are introduced as
n increases. The n = 2 state possesses only a dipole and quadrupole while n = 3 has a dipole
Q1, quadrupole Q2, octupole Q3 and hexadecapole Q4. Each multipole Qj varies as n2i.

From the angular momenta addition scheme, it follows straightforwardly that the highest
non-zero multipole associated with level n is QN where N = 4j = 2(n - 1). It turns out,
even for low n, that a large number of multipoles with large magnitudes must be included in
the long-range expansion. Expressions, similar to those above, have been obtained for the
higher-order multipoles, QN. N > 10 as a function ofni.
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5. H(n)-H(n) long-range interactions

We can now consider the generic case of two interacting hydrogen atoms, H(n)-H(n), with
the same principal quantum numbers n. For parallel-aligned dipoles QA = Q' = Qj, the
multipole interaction is then

2 Q2_ 2 Q 2] O

V_,., (R) 23 I - [4Q-Q3-3Q ]- - 15Q2Q4 + lO -
R5 

3[

(19)

a series consisting only of odd powers of 11R. The fact that the R- 4 term is absent was already
deduced from symmetry considerations (see also [10]). We have shown here that symmetry
precludes, in general, any even power of I /R, e.g., the coefficient of the R- 6 -term in section 2.1
is -5[(QAQ4• - QAQf) _ 2(QAQt - QAQ')] which vanishes when QA = QP. The
coefficients of even powers of 1/R are all anti-symmetric in A Q2 = Qj Qj with respect

to i, j interchange. For anti-parallel-aligned dipoles QA = (_ 1 )IQP = Qi, the multipole
interaction,

V,.(R)•-- a Q2 + 2Q + 3Q•][Q, Q4 + 2Q2Q3]

+ T7 [6Q, Q5 + 15Q2Q4 + 1 3Q•] + O(R 8), (20)

consists of all integral powers j = 3, 4,5 ... of I/R and is always repulsive because Qj > 0.
The first terms of (19) and (20) have the following significance. For general orientation of the
dipoles, the averaged-dipole-averaged-dipole interaction is

Vdd(R) = [d, • d2 - 3(d, • lk)(d 2 • I.)]R
3 , (21)

where d = -(r) = (3n/2)A is the dipole vector. With the Z-axis along R, then

Vdd(R) = -[2d 17 d2z - (d1.d 2. + d1Yd2y)]R 3  (22)

= -dj d 2 [2 cos 0t cos 02 - sin 01 cos 02 cos(Ol - 0b2 )] R3 , (23)

where (d., dy, d.) and (d, 0, 0) are the Cartesian and spherical components of d. For parallel
and anti-parallel dipole-aligned atoms, da = d2 and dI = -d 2 , and Vdd (R) = T2d d2/R 3 is
attractive or repulsive, in agreement with the first terms of (19) and (20), respectively. When
the dipole is aligned along the z-axis, then d. = (3n/2)A3 = (3n/2)[J 13 - J23] operates on
its eigenstate (8) to give eigenvalue (3n/2)k = 3nj = (3n/2)(n - 1), cf, table 1, in agreement
with the multipole Qi (+) of section 4. Such algebraic techniques can also be utilized [14]
with advantage for higher multipoles.

6. Investigation of possible long-range Rydberg-Rydberg molecules

By ignoring the octupole and higher moments, (19) reduces to,
Vdq (R) =--• Q2+2a (24)

dq Q3 -1 5  
2'

where only the terms with dipoles and quadrupoles are retained. Since the quadrupole-
quadrupole interaction is always repulsive (classically and quantally) and grows rapidly as R
decreases, it will eventually serve to stabilize the dipole-dipole attraction for parallel-aligned
dipoles. For each it, n} manifold, the potential V_,,, (R) exhibits a well, of depth

4 Q2Q Q1
Vmini _ __ ____4 a -3.5 x 10- 2

/n1
2

; R, = 1 Q -• 3.7n2, (25)
5R3 25v/5 Q3
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Figure 4. Potential curves for the H(n)-H(n) Rydberg-Rydberg system for several adjacent n - n
manifolds. Solid and dotted lines refer to the parallel and anti-parallel dipole-dipole configurations

of equations (24) and (26). (1 cm-t =_ 1.5 K.)

at the equilibrium nuclear separation R,. The corresponding interaction potential for anti-
parallel alignment is

2 6 6(26)V~q(R , Q QI + -T- QI Q2 + -• 2,

which is fully repulsive. Both sets of curves, with the asymptotic electronic energy -n-2

au added, are displayed in figure 4 for n in the range, 40 < n < 49. The attractive R-3

dipole-dipole and the repulsive R- 5 quadrupole-quadrupole interactions therefore suggest
the possible formation of long-range (i.e., R, > 4n 2) Rydbcrg-Rydberg molecules. However,
it is only for the n = 2 system, H(n = 2)-H(n = 2), that the octupole and higher multipoles are
absent. As n increases, an increasing number of permanent multipoles up to order N = 2(n - 1)
interact. In addition to the quadrupole-quadrupole repulsion, the attractive dipole-octupole
interaction is the only other contribution to the R- 5 -term which now has coefficient

2(3Q' - 4Q, Q3) = -- 14 (n - 1)2[5n(2n - 9) + 41], (27)

which is always negative for n _> 4, so that pure attraction dominates! The dipole-octupole
attraction has therefore offset the quadrupole-quadrupole repulsion. Inclusion of the dipole-
octupole R-5-interaction has changed the physical nature of the interaction from one with
a potential well (figure 4), capable of supporting many vibrational levels, to a potential
which is now purely attractive for those R for which there is no electron overlap. Although
the dipole-quadrupole attractive interaction is only 7/5 times the repulsive quadrupole-
quadrupole interaction i.e., is 20% larger, it is sufficient to offset the repulsion. We have
found, in general, that all permanent multipoles must be included in order to determine the
correct coefficients of the first-order long-range expansion. Explicit calculations, including
all multipoles Qj; j = 1, 2, 3 .... N = 2(n - 1) appropriate for a given n = 2, 3 ... , 50,
show that the net contributions arising from all the multipoles except that due to the last
multipole, Q2,,-2, are all attractive. Net repulsion arises only from the final multipole which
introduces terms -R 2 Nt- = R 4 - 3 into the expansion. Potential wells are indeed exhibited
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Figure 5. H(n)-H(n) Rydberg-Rydberg molecular potentials (19) for several adjacent n - n
manifolds with n = 3, 4, 5, 6, 7, 8, 9, 10, 11.

for all H(n)-H(n) and the steepness of the repulsive wall increases with n. Representative
results are shown in figure 5. We note that these potential curves are much deeper than those
in figure 4 and that the minima are located at shorter equilibrium separations R,,, - 1.2n2 au,
where the multipole expansion may no longer be accurate. At small internuclear separations
R, the adoption of electronic functions with the form (4), which are only diagonal with respect
to each dipole operator, is also subject to question, and a larger basis set (diagonal in the full
long-range interaction) may be required. Moreover, second-order effects (as the van der Waals
attraction) and electronic overlap may no longer be ignored at these smaller R,,,.

In the limit of high n >> 1, the attractive portions of the parallel-aligned dipole potentials
of figure 5 take the asymptotic form,

1 [9 (n2) 3  (n ) (8n2)7]V_,,_ (R) - --- + 15 + J+ O(R 9 ). (28)

The second-order van der Waals (-- 6) term is not included within this expression but is the
subject of separate study.

7. H(n)-H(n') long-range interactions

Figure 6 illustrates several potential curves for interaction between two 'polar' Rydberg atoms
in different levels n and n' but having their dipoles oriented in the same direction. The principal
quantum number of one of the atoms is n = 10, while the other Rydberg atom has n' ranging
from 3 to 11. It is seen that the well becomes much deeper and steeper as n' increases, as
expected from the increasingly attractive contributions from the additional multipoles. The
minima, however, are still located at about 1.2 min (02, na), where distortions, mentioned
previously for the n =' case may also be in evidence. It therefore seems highly unlikely that
long-range Rydberg-Rydberg molecules can be formed from the extreme Stark states with the
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Figure 6. H(l0)-l-(n') Rydberg-Rydberg molecular potentials (19) for parallel dipole-dipole
configuration with n' - 3,4,5,6,7,8,9,10, 11.

greatest dipole moment. The attraction proves just too overwhelming so that repulsion finally
sets in at separations R too small for validity of the long-range expansion.

8. The H(n = 2)-H(n = 2) long-range interaction

Because H(n = 2) contains no octupole and higher moments, it is worth exploring the
ni = 2 case. For small n, the approximation (4) for the eigenfunction of dipole-dipole
interaction operator (5) breaks down, because the wavefunction (4) using the extreme Stark
orbital Vqt,•-Boo(r) becomes an eigenstate of the dipole-dipole operator (5) to high accuracy
only for large n >> 1. It is, nevertheless, possible to exactly determine the interaction [9, 4]
and associated vibrational levels for the n = 2 case. The exact n = 2 eigenfunction which
diagonalizes the dipole-dipole interaction (5) is [9]

-12s2s) + -1.12p02p0) + •,,[I2pi2p-l)+ 12p-2p] (29)

within the {n = 2, n = 2} sub-manifold of Hilbert space. The associated long-range interaction
(12) is then

v(R) =1-5+ 2 5 (30)

with ax = 9-./-6 22 and /1 = 648. Polar H(n = 2) possesses only permanent dipole and
quadrupole moments, so that the long-range interaction (30) is exact up to O(R-6.

The H(n 2)-H(n = 2) potential (30) displays a minimum V(R,1) -2pa/5 (3d/5l) 3 2

at equilibrium separation Rh = 53/4 /3 7a0. Direct numerical solution of the

Schredinger equation for vibrational motion of the atomic nuclei shows that the interaction
(30) accommodates 47 vibrational levels. Although the potential (30) will be distorted by the
second-order van der Waals correction and overlap of atomic orbitals, it is nevertheless clear
that such a long-range molecular state has a rich ro-vibrational spectrum.
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A new type of doubly-excited states for a long-range quasi-molecule is therefore predicted
for the n = 2 case. It is very difficult to populate the states under consideration by conventional
means such as photon or electron-impact excitation from the ground state of H2, because of
vanishing Frank-Condon factors. However, modern schemes such as photoassociation could
allow the hydrogen molecule to be formed in such exotic states.

It is worth noting that the extreme Stark n = 2 orbital is 1II(,,-i)oo = (12s) - 12po))//2_.
The present high-n analysis, when applied to this low n case, of course yields the correct
form (30) for the interaction, but with coefficients, t = 2d1d2 = 18 and P = 6Q2 = 216,
appropriate to the extreme Stark states with dipoles aligned parallel along the internuclear
axis R. The i = 2 level is obviously too low for (4) to be considered as an accurate eigenstate
of the dipole-dipole operator (5), as expected (cf section 2.1).

9. A comment on destruction processes

Any long-range Rydberg-Rydberg quasi-molecule is subject to various destruction processes
as radiation decay, autoionization and predissociation. The detailed account of stability issues
is beyond the scope of this paper. We can show [14] however that the radiation lifetime for
the states under consideration scales as rs - n13/3, which is much longer than 'r - n3 for core
penetrating states, but shorter than the maximum possible lifetime rc - n5 for circular states.
The autoionization width Fu is evaluated within the dipole-dipole approximation for the n = 2
case [9]. It decreases rather rapidly with internuclear distance as -'R-6 and is quite small at
equilibrium separation R,,. Significantly, the autoionization rate is three orders of magnitude
smaller than the vibrational frequency so that autoionization occurs only after many molecular
vibrations. In fact, Ldonard et at [1] have recently noted that 'the autoionization process is
blocked by the extremely large size of the He(2 3S1)-He(23 Po) dimers'. This blockage will be
even more evident in any true long-range Rydberg-Rydberg molecule. Predissociation arises
from the crossing of the lowermost attractive curves (figure 4) in one ({, n} manifold with the
uppermost repulsive curves in the lower-lying [n - A, n - A} manifold. Interaction between
such curves corresponds to the flip of one of the atomic dipoles which is strongly suppressed.

10. Summary

The flexibility of the energy shell of a Rydbcrg atom in a broad superposition of angular
momentum states changes dramatically the nature of the interaction between such atoms.
These Rydberg atoms are termed 'polar' because they have permanent multipoles Q. Higher-
order permanent multipoles are introduced as n increases. The highest non-zero multipole
associated with level n is QN where N = 4j = 2(n - 1). Analytical expressions for the
electrostatic long-range first-order interaction between polar Rydbergs in extreme (the most
stretched) Stark states have been obtained in terms of Qi, expressed analytically as functions
of principal quantum number a. Each multipole Qi varies as a

2
i.

By including only the attractive dipole-dipole -R- 3 and the repulsive quadrupole-
quadrupole -R-5 interactions, we have shown (figure 4) that molecules could possibly be
formed with relatively large equilibrium separations R, • 3.7n2. Addition of the dipole-
octupole attraction, which also -R- 5 , however offsets the quadrupole-quadrupole repulsion
and destroys this possibility; except for the a = 2 case, which has no octupole and higher
moments.

We have also shown that all the multipoles associated with a given . must be included
within the long-range expansion in order to determine the correct nature of the first-order
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interaction. The net contribution from all the multipoles is purely attractive, except for the
last multipole Q2(,,-1) which provides repulsion, which becomes increasingly steeper with n.
Potential minima however occur at relatively modest internuclear distances R • 1.2n2, where
other effects such as second-order van der Waal's attraction and electron overlap become
effective, thereby compromising the validity of the long-range expansion at such low R.
As n increases, the interaction becomes increasingly attractive so that long-range molecular
formation is expected to be scarcely possible for these extreme Stark levels.

The long-range interactions provided here for these polar Rydberg atoms could be probed
by an optical lattice, a regular 3D arrangement of cold trapped atoms. Atoms can be excited
to Rydberg states. It is then possible to selectively populate specific Stark levels with a given
m by applying a moderate electric field aligned with one of the principal axes of the lattice.
The electric field would also protect these Stark states by lifting their degeneracy within the
hydrogenic manifold. For all atoms in the lattice, the electron clouds will be stretched in the
same direction and the strong dipole-dipole interaction will be operative and can be probed by
laser spectroscopy. Isolated atoms in the lattice will be resonant on the unperturbed Stark line.
For a pair of neighbouring atoms, sidebands could therefore be observed on the red side of the
'naked' Stark transition. The parameters of the optical lattice can be so chosen as to maintain
the atoms at a distance of several times n2, where the dipole-dipole interaction prevails. As

the laser field creating the optical lattice is switched off, the atoms accelerated by attraction
fall towards each other and the 'polar Rydberg arrangement' in the optical lattice collapses in
a time long enough for laser probing to be completed.

We have concentrated here on Rydberg-Rydberg states with zero projection A = 0 of
total orbital electron momentum along the internuclear axis. States with non-zero A have a
weaker dipole-dipole interaction.

In summary, we have therefore provided the first detailed investigation of the full first-
order long-range interactions between 'polar' Rydberg atoms. This work has opened up a
very promising and interesting new field with many theoretical and experimental possibilities
and challenges ahead.

Acknowledgments

This work is supported by AFOSR grant no 49620-02-1-0338 and NSF grant no 01-00890 to
Georgia Institute of Technology and by NSF grant to ITAMP at Harvard University, where
MRF and VNO were long-term visitors.

References

[I] Ldonard J, Walhotut M, Mosk A P, MililerT, Leduc M and Cohen-Tannoudji C 2003 Phys. Rev. Lett. 91073203
[21 Stwalley W C, Uang Y-H and Pichler G 1978 Phys. Rev. Lett. 411164

Stwalley W C and Wang H 1999 J. Mol Spectrosc. 195 194
131 de Oliveira A L, Mancini M W, Bagnato V S and Marcassa L G 2003 Phys. Rev. Lett. 90 143002

Avdeenkov A V and Bohn I L 2003 Phys. Rev. Lett. 90 043006
Venturi V, Leo P J, Tiesinga E, Williams C J and Whittingham I B 2003 Phys. Rev. A 68 022706
Boisseau C, Simbotin L and C6t6 R 2002 Phys. Rev. Lett. 88 133004

Greene C H, Dickinson A S and Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458
1411 Jonsell S, Saenz A, Froelich P, Forrey R C, C6t6 R and Dalgarno A 2002 Phys. Rev. A 65 42501
151 Jaksch D, Cirac J 1, Zoller P, Rolston S 1, C6td R and Lukin M D 2001 Phys. Rev. Lett. 87 037901
161 Lukin M D, Fleischhauer M, C6tW R, Duan L M, Jaksch D, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 85 2208
171 Kazansky A K and Ostrovsky V N 1996 Phys. Re'. Lett. 77 3094
[81 Vrinceanu D and Flannery M R 2000 Phys. Rev. Lett. 85 4880

Vrinceanu D and Flannery M R 2001 Phvs. Rev. A 63 032701
Flannery M R and Vrinceanu D 2003 Int. J. Mass Spectrom. 223-224 473



4 .3

Long-range interaction between polar Rydberg atoms S293

191 Nikitin S I, Ostrovsky V N and Prudov N V 1986 Zh. Eksp. Teor Fiz. 911262
Nikitin S I, Ostrovsky V N and Prudov N V 1986 Soy. Phys.-JETP 64 745

[101 Braun P A, Ostrovsky V N and Prudov N V 1993 Phys. Rev. A 48 941
1111 Margenau H and Kestner N R 1969 Theory ofIntermolecular Forces (Oxford: Perganmon) p 265

[12] Fontana P R 1961 Phys. Rev. 123 1865
[13] Varshalovich D A, Moskalev A N and Khersonski V K 1988 Quantum Theoty ofAngular Momentum (Singapore:

World Scientific)
114] Ostrovsky V N, Flannery M R and Vrinceanu D in preparation

115] Bethe H A and Salpeter E E 1997 Quantum Mechanics of One- and Two-Electron Atoms (New York: Plenum)
p

14



The enigma of nonholonomic constraints
M. R. Flannerya)
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 16 February 2004; accepted 8 October 2004)

The problems associated with the modification of Hamilton's principle to cover nonholonomic
constraints by the application of the multiplier theorem of variational calculus are discussed. The
reason for the problems is subtle and is discussed, together with the reason why the proper account
of nonholonomic constraints is outside the scope of Hamilton's variational principle. However,
linear velocity constraints remain within the scope of D'Alembert's principle. A careful and
comprehensive analysis facilitates the resolution of the puzzling features of nonholonomic
constraints. © 2005 American Association of Physics Teachers.
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I. INTRODUCTION Lagrange set (6) provide the correct equations of state. Be-
cause Eq. (4) is independent of Xk, the last c equations of

The action integral, the Euler-Lagrange set (6) for the Xk (k= 1,2..., c) simply

S= ft2 reproduce the equations (3) of holonomic constraint.
L= (qt)(1) A recurring theme1 -4 is whether Hamilton's principle (2)

may be similarly generalized so as to treat nonholonomic
plays a central role in the dynamics of physical systems de- (dynamic) constraints,
scribed by a Lagrangian L. Hamilton's principle states that
the actual path q(t) of a particle is the path that makes the g(q, , t) = 0, (7)

action S a minimum. It is well known that Hamilton's prin- which depend on generalized velocities l, simply by substi-
ciple, tuting

MS= 2L(q,4,t)dt=0, (Hamilton's principle), (2) L*L + Xk(t)g.(q,4,t) (8)

k=1
when applied to problems involving c-holonomic constraints
with the geometric form, for L in Eq. (2). A theorem in the calculus of variations

appears, at first sight, tailor-made for such a conjecture. The
fk(q1 ,q2,...,q0 ,t)=0, (k= 1,2,...,c), (3) theorem 5-7 states that the path q(t) that makes the action Eq.

leads to Lagrange's equations of motion whose solution pro- (1) have an extremum under the side conditions (7) is the
vides the time dependence of the (n - c) independent gener- same as the path that makes the modified functional, S*
alized coordinates qj for the unconstrained degrees of free- =f-'2L*(i1,J7,t)dt, an extremum, without any side condi-
dom. For robemsthatreqireaddiionl clcultio ofthe tions imposed. On the basis of this multiplier rule, the con-For problems that require additional calculation of the jecture, the substitution of Eq. (8) in Eq. (2), was simply

forces Q. of holonomic constraint, Hamilton's principle may jecte, theutitution f Eq. () n E as simplygeeaie. oyedcretreut1ipyb elcn adopted without reservation for the general case (7) and
be generalized to yield correct results simply by replacing L equations of state were published. 1-3
in Eq. (2) by This conjecture becomes problematic, particularly because

c the multiplier rule does not yield the standard equations of
L1=L(q,l,t) + XkW(t)f(q,t), (4) state as obtained from D'Alembert's more basic principle for

k=1 systems with less general nonholonomic constraints,

where the XA are Lagrange multipliers. Equation (2) is there- n
fore replaced by Hamilton's generalized principle, g(L)(qq i)- • AkJ(q,t)cj+Bk(q,t)=O, (9)

j=1

,5$t"= .5t2Lf ( 27, i7, t) dt = 0, which are now only linear in the velocities 4j. Yet, the same
multiplier rule 5-7 works for the holonomic constraints in Eq.

(Hamilton's generalized principle), (5) (3).
from which the Euler-Lagrange equations The question of whether the use of Eq. (8) in Eq. (2) is a

viable generalization of Hamilton's principle is of interest
d- -0t, _At here, because Ref. I advocates its use and cites the equations
dt j =0, ( 1,2,..... n+c) (6) of state derived from it. 3 However, this generalization had

previously been acknowledged 4 as being incorrect because it
can be derived via firee variations of the extended set 17 did not reproduce the correct equations of state for systems
-{q(q1 ,q 2,...,q,,),X(X 1 ,x 2 .... c)} of the (n+c) variables under linear constraints in Eq. (9). Some textbooks 8  also

involved in Eq. (5). Because fj(q,t) are independent of the have indicated the fallacy of using Eq. (8) in Eq. (2). How-
generalized velocity 1, the first n-equations of the Euler- ever, the basic reason for its failure has remained obscure.
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The multiplier rule5- 7 is indeed correct, as stated, so the fact is such that the virtual work QjSqj=FF.Srj is equivalent in
that it works for holonomic constraints (3), but not for non- both representations and may be decomposed into a potential
holonomic constraints (7) poses a dilemma, part,

Many examples can be given that explicitly illustrate that
Eq. (8) does not provide the correct results as obtained from Q.\qt) •.(dj) (13)
Newtonian mechanics. 2 In this paper, we search for the rea- .
son why the procedure fails and, in so doing, we also explain derived from a generalized monogenic (the same for all par-
why the proper account of nonholonomic constraints given tived potentialized aonogni(thesa l par-
by Eqs. (7) and (9) is outside the scope of Hamilton's prin- es) potential U(q,l,t) and a nonpotential part Q7 P
ciple, even though the linear constraints in Eq. (9) remain =Fi'7'r 1/f9q.. D'Alembert's principle is then
within the scope of D'Alembert's principle. We will find the d ( OL \ OL NPp
conditions that Eq. (8) must satisfy for valid substitution into I - - - J Q j = 0, (D'Ale r
Eq. (2). We also will indicate why the general nonholonomic L-I\ j/ 0 - Qj
constraints in Eq. (7) are outside the scope of a principle (14)
based on virtual displacements. Rather than beginning from where the Lagrangian is
Eq. (2) and showing, as has been done, that an application
involving Eq. (7) or (9) leads to erroneous results,4'8-12 more L(q, 4,t) = T(q, l,t)- U(q, 4,t). (15)
insight can be gained by tracing the various stages of devel-
opment of the variational principle, Eq. (2), from the more B. Holonomic constraints
fundamental principle of D'Alembert. The essential reason
will then become apparent. When the c-constraint conditions in Eq. (3) are utilized to

Because variational theorems and methods are essential reduce the number of generalized coordinates from n to the
tools of modem analytical dynamics and because various minimum number (n - c) of actual independent degrees of
fallacies underlying their use are subtle and are not generally freedom, that is, when the constraints are embedded within
well appreciated, it is hoped that the following account will the problem at the outset, then all the (n - c) 8qj's in Eq.
help illuminate their scope of application. (14) are independent of each other. Because each displace-

ment can take on any value at each t, the satisfaction of
II. THEORY D'Alembert's principle, Eq. (14), demands that each coeffi-

We first outline some standard deductions of D'Alembert's cient of 8qj in Eq. (14) separately vanishes to yield
principle, which is then expressed in a useful variational Lagrange's equations, ,8 -1,13

form that will provide a "royal road" from which Hamilton's dO IL) dL NP
principle can be easily extracted. The resolution of why the dt - q = (16)
extended Lagrangian Eq. (4) works, while Eq. (8) does not, t qj dq J

in Hamilton's principle, Eq. (2), will then become apparent for the (n - c) independent degrees of freedom.
via this approach. When the holonomic constraints Eq. (3) are not used to
A. Differential form of D'Alembert's principle reduce the set of generalized coordinates to this minimum

number, that is, when they are instead "adjoined," then c ofThe motion of a system of particles, i= 1,2,....,N of mass the bq/'s in Eq. (14) depend on the independent (n-c) co-
rni located at ri(t) in an inertial frame of reference is gov- ordinates and are constrained by the c conditions,
erned by Newton's equations,

Fi + F'=min i (10) Of8q~i=O, (k= 1,2,...,c) (17)

where the net force acting on each particle is decomposed
into an active force Fi and a force F7 of constraint. A virtual which is obtained by differentiating Eq. (3) and keeping t

fixed. The Lagrange multipliers Ik(t) can then be introduceddisplacement e8ri is an instantaneous variation from a given by subtracting the quantity X\k(dfk/dqj) Sqj=O0 from the left-configuration ri performed at a fixed time t and taken con- hand side of Eq. (14) to give
sistent with the constraints at that time. The summation con-
vention, aijq1i=7%l1aiq.j for repeated indices j will be [d td OL - L Ofk(q,t) QP 1

adopted. 0L \ X( Q )
Assume that the total virtual work F'>.5ri performed by all

the constraining forces is zero. D'Alembert's principle, in X 8qj(t)=O. (J l,2,...,n). (18)
both Newtonian ri (i= 1,2,... ,N) and generalized qj (j Nonpotential forces QýP are included in Eq. (18). If we

= 1,2.....3N) coordinate versions, states that1'-' 13  denote the tn=n-c independent (free) coordinates by

di (T\ 9TQ] qi=O, q( 1  ,q 2 ,..., qm, and the c-dependent ones by(m iPi-Fi).Sri=i 'd j 0)4- 1 q. (11) qm+, qi+2,...,q1, then the previously unassigned c multi-gI pliers, Xk, are now chosen to satisfy the c equations,

where the total kinetic energy T= rmirT(q,q,t) is expressed
in terms of the n = 3N generalized coordinates of all the d-(_) - L df=(q,t) +QNP
particles. The generalized force, d- -j dq= t qj J

dr- (12) (j = in + 1,m + 2,..., n). (19)

Q F qj' Equation (18) then reduces to
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d odLj_ dL Ofk(q, t) ] the displaced paths must be geometrically possible by satis-
-d-t d(t) "q* Q-IPJ fying the equations (24) of constraint. As will be shown next,

this condition is violated, in general, by nonholonomic con-
X×qj(t)=O, (j=1,2,...,m) (20) straints.

for the free m = n - c coordinates. Because the in bqj's in C. Nonholonomic constraints
Eq. (20) are all independent and arbitrary, each of the qj C

coefficients in Eq. (20) must separately vanish. The set, The virtual displacements Sqj for nonholonomic systems

dd fL 9L . fk ( q,t) with c linear constraints,dt j dO qj= d -- qj Q i =1'2""")'y~~t)j
-td1Iqk n9k)q t)=Aj(q,t)qj+Bk(q,t)= 0, (25)

(21) obeyed by the actual path, are themselves constrained to
therefore represents the equations of state for the full array of obey c instantaneous conditions
dependent and independent variables q1 ,q2,...,qý. Ak 1(q,t) 8 q1 =O, (k- l,2,....c) (26)

Now adjoin the constraint equations (3) to the Lagrangian

set in Eq. (21) of n-equations to provide n + c equations for obtained by first writing Eq. (25) in differential form as
the n + c unknowns, the n qj's and the c Xk's, so that the sets (L(27)

{9k} may in principle be detenined. By)dt=A(qf)dqj+B(qt)d
qý{qj} and (21) wtEq(1) i t princ ise se dennthatBy and then by setting dt= 0 and dqj= dqj as prescribed. As
comparing Eq. (21) with Eq. (16), it is seen that Qj with Eq. (17), the linear conditions (26) also may be ab-
=-k(fk/dqj) are additional forces acting on the system. sorbed in D'Alembert's principle because Eq. (14) is linear
These Q• must therefore be the forces of constraint which, in 8q.. By adding XkAkjtqj=O to the right-hand side of Eq.
because of Eq. (17), do no virtual work, as required for thevalidity of D'Alembert's principle. Although standard, 1,8-13 (14), and by proceeding as before in Sec. 11 B, the equations
vtye abofereview wAllhemb l proinle. Athecougt stohatnd , of state under the linear constraints in Eq. (25) are obtained
the above review will help provide the context to what now in the form

follows.
Because fA. is independent of the velocities l, a general- d I _dL L

ized D'Alembert principle, dt qj =Xk(q't)Akj(q't)+Q.P' (j 1,2....n)
Fd (Lt\ 0Lt  (28)

d djt--- _W _ i=0, (j= 1,2 ... , n+c) for all the coordinates. We now examine the validity ofL J ý di1. -D'Alembert's generalized principle
(D'Alembert generalized principle), (22) d [d(L + _kg•k).] (L + lx.gk) NP

can therefore be introduced where Lt( i7,27,t)=L -d QOji t5 q= 0,
+Xk(t)fk(q,t) is an augmented Lagrangian over an ex-
tended set of coordinates r7- (q,X). On regarding all "lj as (j 1 ,2 .... n+c), (29)

free, then applied to nonholonomic constraints Eq. (7), where /k(t) are

d r d(L +X\J~k) 1a(L + XJ a different set of multipliers and where all byrj are regarded

J) - f =QI (j = 1,2,...,n+c) as free. On introducing Gkj, where

(23) _ d d (9gkg]

are the generalized Lagrange equations for the extended set GkJ-i= -d7-)- -qJ] (j=1,2,....n), (30)
71j. The first n equations of Eq. (23) reproduce the correct and is zero for j>n, Eq. (29) can be rewritten as
equations of state, (21), and the last c equations reproduce
the constraint equations, Jk= 0. Hence, D'Alembert's prin- [dl dL L .+ gk dAk_ NPQ

ciple in Eq. (14), with the displacements Sqj subject to the c [dt\ 97ij -+- k nj +- IkGkfj -- gk Qj7j = 0,

conditions in Eq. (17), is equivalent to the generalized prin-
ciple, Eq. (22), with all coordinates yr free. The replacement (j= l,2,....n+c). (31)
of the basic principle Eq. (14) with the subsidiary conditions The first n equations of Eq. (31) provides the equation of
Eq. (17) by the generalized principle Eq. (22) without sub- state,
sidiary conditions is the Lagrange multiplier rule. Both prin- d/iL OL
ciples provide identical equations of state, Eq. (21), and the -J- - O IAkGkj±Q. (j=I,2,...,n),
multiplier rule in Eq. (22) provides the shortcut. dt dq j / -Iq1  jt +1

It is important to note that the displaced paths qj+ Sqi, (32)
not only comply with the essential conditions in Eq. (17) for as derived from D'Alembert's generalized principle, Eq.
the displacements, but also satisfy the equations of con- (29). The last c equations of Eq. (31) yield the constraint
straint, equations (7), as expected. But Eq. (32) reproduces the cor-

fk(q 3q,t) =fk(q,t) +,6fk(q,t)= 0, (24) rect equation (28) of state for the linear constraints in Eq.
(25), only when Eq. (30) for linear constraints vanishes, that

because there is no change 8fk=(ifk/ilqj)Sqj=O to the is, provided
constraint Eq. (3). The displaced paths are therefore all geo- (L)_[ -O Aj . +iAk] OBk(3
metrically possible because they all conform to Eq. (24). The I i ___ /
key requirement for application of the multiplier rule is that - - qi dqj/ i+ 9t - qj = (
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Because condition Eq. (30) is basic to validity of Eq. (29), g2)(q,l)=(4ql+3q'j 1 +2qjq 2 42 =0, (42)
the significance of this auxiliary restriction on the linear con-

straints (25) will now be explored.
In order for Eq. (25) to be a perfect (exact) differential of is not exact but can be integrated via the integrating factor

a function fk(q,t), we must have (D2 (=q ) to give f2=qaI+qIq =2constant. All exact con-
straints are therefore integrable, but all integrable constraints

d Ofk- . fk( are not necessarily exact. The conditions (35) and (36) are
Ai(q,t)i+ Bk(q,t) = 7-fk= -qi+ - (34) too restrictive for integrable constraints gt, which can how-

ever be rendered in exact form by multiplying by the inte-
The correspondence Ak,= a..faqi and Bk= Jk/dt provides grating factor (D (q,t). Then g("Sh)= -)g(') now satisfies the
the (necessary and sufficient) conditionsk kk

condition (33) for both exactness and geometrically possible

dAki= _ 2fk= = -d2fk dAki (35) displaced paths. For example, the constraint,

aqj caqj dqi  aqiqj a qi h 3 2 2(34)

92a/ d2fk 9s (4q,4) = 3qlq2 )q + 2q q2q2 = 0,"?Bk 2fk- _E.f =_ 0Ai (36) (43)

aqj dqidt dtdqi at '
for the "exactness" of Eq. (25). Provided the linear con- now satisfies condition (33) and is therefore in exact (semi-

straints (25) satisfy conditions (35) and (36), an integrated holonomic) form. A known integrating factor 4)k implies a

form fk therefore exists but may be unknown. Such con- known integrated holonomic form fk, =0, so that the simpler

straints are termed seiniholonornic and arc denoted by holonomic result Eq. (23) can be used rather than
sh) = 0. But the conditions (35) and (36) for exact- D'Alembert's generalized principle (29).

9k ( = B h d n )The linear constraints (25) which do not satisfy the exact-
ness yield condition Eq. (33), for all q'i which satisfy the ness condition (33) are classified as nonholonomic.
constraints. Semiholonomic constraints can therefore be cor- D'Alembert's generalized principle (29) is therefore not ap-
rectly treated by D'Alembert's generalized principle, Eq. propriate for nonholonomic constraints (25), as is also con-
(29). In addition to exactness, semiholonomic constraints firmed by the fact that Eq. (32) is not the correct equation
(G,-•Lj 0) possess a further important property. The equa- (28 of 0,-k~i =(28) of state, because GA) • 0 in general.

tions of constraint appropriate to the displaced paths q+ - q D'Alembert's basic principle, Eq. (14), is not amenable to
are general nonholonomic constraints (7), because there is now

gk(q+ -q,4+ '6,4t)=gk(q,4,t)+ 1g.(q,l,t). (37) no relation such as Eq. (26) which connects the displace-
ments Sq1 in a linear form. The fact that Eq. (7) is, in gen-

Because g9(q,4,t)=0 for the true dynamical path q(t), the eral, not a linear function of 4j prohibits writing a linear
constraint equations for the displaced paths change by interrelation between the 5qj's essential for the application

• ag k=Og,"8qq•O-.of D'Alembert's principle. General nonholonomic con-
-:----- -qj(t) + et. (38) straints (7) are therefore outside the scope of all principles

J based on virtual displacements.

With the aid of 54j(t) = d[ oqj(t)]1dt, this difference is The key conclusions of Sees. II B and II C are the follow-
ing:

d dgA. )
-1[5gk = T q(qj -t) Gkjfqj(t). (39) (1) D'Alembert's basic principle, Eq. (14), is applicable to

dt dq1  j I holonomic and linear nonholonomic constraints, as is al-

The condition for the displaced paths to be all geometrically ready known.

possible is that gk(q+ 5q,4j+ 84,t) = 0, that is 8gk= 0 and (2) D'Alembert's generalized principle, Eq. (22), applies to

the constraints are invariant to displacements. For the linear holonomic constraints and Eq. (29) applies to semiholo-

constraints (25), Eq. (39) reduces to nomic systems, because the displaced paths are also geo-
metrically possible paths, an essential criterion for the

(L) d validity of the underlying multiplier rule. The solution of
kgk= -- (Akjq) G•)SqJ. (40) both sets provides the actual path {qj(t)} and the con-

On invoking the basic restriction (26) on the displacements straint forces {Q}.
and the exactness condition (2(L) n th edi cements (3) The displaced paths qj+ 8 qj for linear nonholonomic

h Gj)- 0, Eq. (40) reduces to systems are not geometrically possible and therefore do
5g('Sh)= 0, which implies geometrically possible paths. not satisfy the multiplier-rule condition.

D'Alembert's generalized principle (29) with Eq. (25) there- (4) It is important to distinguish restrictions imposed on vir-
fore holds for semiholonomic systems where the displaced tual displacements, such as Eq. (26), from the actual
paths are all geometrically possible. Semiholonomic systems equations of constraint, such as Eq. (9), which must only
are, in essence, holonomic, although the integrated holo- be satisfied within the equations of state that are eventu-
nomic form J'k= 0 may not be known, ally determined by some variational procedure. The con-

Linear constraints (25) can be integrable and yet violate straint equations g9(q,4,t)= 0 satisfied by the true dy-
the exactness condition (33). For example, the constraint, namical path q(t) do not necessarily imply that the

gtSh) (%)=(3q'+2q')4l1 +
4 qIq 24 2 =0, (41) corresponding equations g9(q+ 8q, l+ 84l,t) = 0 are sat-

S 2~ +isfied by the displaced paths.
is exact because (33) is satisfied and it integrates directly to (5) General nonholonomic constraints (7) are completely

give f, = q3 +2qqIl= constant. The constraint, outside the scope of even the most fundamental principle
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of D'Alembert. The generalization 1-3 of any principle E. Generalization of Hamilton's variational principle
based on Eq. (14) to general nonholonomic constraints is
without foundation. Hamilton's integral principle,

12 (L d t = J t2L dt = [p j ,5qj] ,t,2- 12 ! Pt~qj]dt,
D. The 8L version of D'Alembert's principle f, I f I ['2 ([0)

(50)

The Lagrangian for the varied paths is is D'Alembert's principle, Eq. (47), integrated between the

L(q+ ±q,l+,64,t)=L(q,4,t) + 8L(q,l,t), (44) times t1 and t2 . The 6 operator does not affect the time and
was therefore taken outside the integral. The appropriate Eq.

where the change in L due to the virtual displacement Sqj (28) for linear nonholonomic constraints is recovered by
from the actual path q is making the time integration in Eq. (50) redundant. The ap-

S AL plication of Eq. (50) then reduces simply to an application of
8L = - bqi(t) + (45) D'Alembert's basic principle (14), as in Sec. 11 C. The main-qj (" -Sj advantage, however, of the integral principle Eq. (50) is that

With the aid of 54j(t) d[ 3q 1(t)]/dt, the change is it becomes a variational principle,

d [d=j p.qj(t)-d 'ý ]• qSqj(t), (46) 8S=3f"Ldt=0, (51)
dt Tdt \0 ?j -(q j

where the generalized momentum is defined as pj by admitting only those paths qj(t) that pass through the
L D'Alembert's basic principle (14) can then be fixed end points, 8qj(tl,2) =0, and by considering only po-

recast in &L form as tential systems, that is, QO = 0. The virtual variation (5 en-
d sures that the transit time 'r=t 2 -tI remains the same for all

SL= -(p5q)-QP3q (47) the varied paths. Equation (51) is Hamilton's principle for

The differential version, Eq. (14), and the iSL version, Eq. the least action S 1f2L d.

(44), of D'Alembert's principle are equivalent and are fun- When attempting to generalize Hamilton's variational
damental equations of dynamics. When the holonomic con- principle, Eq. (51), the conditions for generalization of the
straints (3) are adjoined, rather than embedded, there are c more fundamental differential and &L versions, Eqs. (14) and
5qj's in Eq. (46) that are dependent on the remaining (n (47) of D'Alembert's principle by the multiplier rule, are still

-c) displacements. Because there is no change, 5fk=0, to in effect. Equation (51) can be directly applied to holonomic

the holonomic equations (3) among the varied paths, we may systems with the embedded constraints in Eq. (3) to recover

add o5jXk(t)fk]= 0 to the left-hand side of Eq. (47). By uti- the correct equations of state (16) with Q1 =0. When holo-

lizing the augmented Lagrangian L t over the extended set of nomic constraints are adjoined in order to determine the con-

free generalized coordinates q_=(q,X), the generalized ver- straint forces, then L in Eq. (51) can be replaced by Lt=L

sion of D'Alembert's principle, Eq. (47), is +Xk(t)fk(q,t), because 8ft=0, to give Hamilton's gener-
alized principle

d
RLt( i7, iVt) = b'L + Xk(t)f k(q,t)] = -(pj. 5 7j) - Q0P1".72.

(48) 8sS= 5 12 Lt( I,,qt)dt= Jt2[L+ Xk(t)f.(qt)]dt=O,

If we use the definition (46) for 5L, the generalized version (52)
(48) reproduces the correct equations of state, Eq. (21), and
provides another example of the multiplier rule. where the 8-qj's involved are free and independent. For

For semiholonomic systems, the Lagrangian L can also be semiholonomic constraints, Hamilton's principle is general-

replaced by L(Sh)-=L+ gg( sh) because the constraints ized to

g9kh)(q,l,t)=O are exact, thereby satisfying the condition 5stst)L(S5)(
6g('Sh)=0 for geometrically possible paths. D'Alembert's S(sh) V, t)dt

generalized principle (47) therefore yields the equations of
state = t2 [L + 9k(t )g

"--d -d(L + , ( gS(h))1 d(L+ ~g•Sh)) =, 5J [l (h)(q,•,t)]dt=O. (53)

dt[ a j J 7j The essential reason for the validity of (52) and (53) is that

QN, (j= 1,2,,.., n + c) (49) the paths q+ 8q admitted into the variational procedures are
all geometrically possible, that is 8~fk= 0 and (5g(sh)= 0 and

for the extended coordinates (-= q,li) for a semiholonomic a
system. The multiplier rule of replacing L in Eq. (47) by that the 8 and f operations commute. The correct equations

L*=L+ + gkg is, however, not valid for inexact linear or of state (19) and (49) with P=0o
general nonholonomic constraints, because the displaced and (53), respectively. Because g9h) is, by definition, the
paths are not geometrically possible paths, as explained in perfect differential dfk/dt, then provided that fk is known,
Sec. 11 C. Eq. (53) reduces to
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III. A TEST CASE

Some of these key points may be tested by the physical
system depicted in Fig. 1. The solution of this spinning-

J rolling problem does not appear to have been provided in
any standard textbook, although the limiting cases of rolling
without spinning down a plane' and rolling-spinning on a

horizontal plane 8'10 have been analyzed. Let rem.=X!+y]
W: + zk be the Cartesian coordinate of the center of mass (c.m.)

of the coin of mass M and radius R, where the origin 0 is at

the top of plane and where the directions i, j, and k form a

Cartesian (X, Y,Z) fixed set of axes, with i pointing directly
downward along the plane. Let 0 and b be the angles asso-
ciated with the rolling and spinning motions about the sym-
metry axis (which is perpendicular to the coin) and the axis
pointing along/k, the fixed outward normal to the plane. The

Fig. I. An upright coin rolls and spins down an inclined plane of angle a. Lagrangian is

Directions of space-fixed axes are i, .j, and ý, as indicated. Coin rolls with
•L(ý2ý) Ib2 " 2 +(55)

angular velocity @Rý1= 0.i about axis fi which in turn spins with angular L= 2M(. 2 +j 2)+ ½Is02+ IDo2 +Mgx sin a, (55)
velocity ZSs= (-k about fixed axis k-. The center of mass has velocity 6
=Rbi. where Is=f3MR2 and ID are the moments of inertia of the

body about the symmetry axis and the fixed Z-figure axis,
respectively. Cases involving a solid sphere, coin, solid cyl-
inder, spherical shell, hoop, or cylindrical shell, can be

s=ft2[ d fO 1  d treated by taking /3= 2/5, 1/2, 1/2, 2/3, 1, and 1, respectively.
LI.dt Rolling without spinning: j) 0, qf 0. This example is a

simple test of our proof that semiholonomic (exact linear)

=5 2[L - ik(t)fk(q,t)]dt= O, (54) constraints g(Sh)(q,l,t) = 0 are covered by D'Alembert's and
ftl Hamilton's generalized principles, Eq. (49) or Eq. (53), re-

the holonomic form (52), as expected. The relationship be- spectively. The rolling constraint g=xý-Rb=O is exact so
tween the multipliers is Xk= - Ilk, as also shown in Sec. that the generalized principles should work. If we apply ei-
I1 C, ther Eq. (49) or (53) to the augmented Lagrangian,

Hamilton's variational principle (51) cannot be general- L(sh)( , 1j) - M2+ Isb2 +Mgx sin a * +/z(o - R
ized to inexact linear or more general nonholonomic con- 2 R

straints, Eq. (9) or (7), by replacing L by L + Ikgk in Eq. (56)

(51), as has been suggested.1- 3 The fact that 5gk * 0 for these for the extended set V= (x, 0, z) of free coordinates, we ob-
cases implies that the varied paths are not geometrically pos- tain the equations of state, Me= Mg sin a- A, IsO= 11R, and
sible. We have shown that generalization of Hamilton's and
D'Alembert's principles rests on the multiplier rule which
demands that the varied paths be geometrically possible, a tion ~g sin a/(l +/3) and the frictional constraint force /I

property reserved only for holonomic and semiholonomic which produces the torque needed for rolling motion,
systems. [(/30(1 +/3) Mg sin a, in agreement with standard

results"'8-10', 3 obtained from holonomic theory, Eq. (22).
Rolling and spinning in two dimensions. We now test to

F. Validity of generalized principles and multiplier rule see if linear conditions exist between the displacements (5qj
needed for D'Alembert's basic principle (14) and then see if

The generalized principles of D'Alembert and Hamilton the constraints imply geometrically possible displaced paths,
are effected by the multiplier rule (see the Appendix). The as needed for the generalized principles. The constraint for
theorem (rule) applies only when all varied paths (q+ 8q) rolling is now
preserve the side conditions gk(q+ 8q, l+5,lt)=0, that is g,
the &l variation causes no change 1g6.=O to gk. The dis- I (57)

placed paths arc then geometrically possible in that they sat- which is nonintegrable and quadratic in the generalized ve-
isfy the same equations of constraint. It is only for holo- locities. There is no velocity component perpendicular to €
nomic and semiholonomic constraints that the appropriate so that a second constraint is
criteria, '5fk= 0 and t5g~ssl)=O, are satisfied. For all nonholo- g 2(•,ý) =,ý sin (P-ý cosO •b0, (58)
nomic constraints, the conditions gk=0 cannot be satisfied
by the displaced paths and are therefore not good constant which is also nonintegrable, but linear in the generalized
side conditions, as the multiplier rule demands. The invari- velocities. That the coin remains upright implies that the cen-
ance of the constraint equations to displacements is the key ter of mass coordinates (x,y) are also those for the point of
condition for application of the multiplier rule. The applica- contact of the coin with the plane and that z=R, a holo-
tion of Eq. (6) to nonholonomic constraints is therefore with- nomic constraint which can be embedded from the outset
out justification. unless the normal reaction (constraint) of the plane on the
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coin is sought. From Eqs. (57) and (58), the virtual displace- nomic (exact linear) constraints which have the property that
ments satisfy all displaced paths are geometrically possible in accord with

(Sx) 2 + (6Y) 2 -R 2(6O) 2 = 0, (59) the multiplier rule.
We have traced the development of various generalized

bx sin 4'- by cos 40=0. (60) principles from D'Alembert's basic principle in such a way
as to render transparent their scope of application. It is usefulThe relation (60) is linear in Sqj and therefore amenable to t eptefloigcnlsosi id

being absorbed into D'Alembert's principle, Eq. (14). The

quadratic relation (59) cannot be directly absorbed. Fortu- (1) D'Alembert's basic principle, Eq. (14), is the most fun-
nately, for this case, the offending quadratic constraint (57) damental of all the principles considered here.
can be replaced by the combination g 2=gl"-g2 ofgl and (2) D'Alembert's basic principle, Eq. (14), and Hamilton'sgc to give variational principle, Eq. (2), are well designed for holo-

nomic systems. Equation (16) is the equation of state.
cos 4'+j) sin qS-R b= 0, (61) (3) When constraint forces in holonomic systems are sought,

which leads to the linear form, D'Alembert's generalized principle, Eq. (22), and
Hamilton's generalized principle, Eq. (5), are appropri-

Sx cos 40+ tSy sin 4O-R6O=0, (62) ate, because the varied paths under holonomic con-
which is now suitable for application of D'Alembert's prin- straints are all geometrically possible and the underlying
wile.Th dispnowlsuiabed fos a 3ication of e chanemers, prnmultiplier rule is then valid. Equation (6) is the equation
ciple. The displaced paths q1 + Sq1i cause the changes, of state.

Sg, = (V cos 4,+ 6j sin 4)-R M (4) The correct equations of state (28) for general linear
nonholonomic constraints are furnished only by

- (.i sin 4,-j cos 4))48, (63a) D'Alembert's basic principle, Eq. (14), or its time-

4g.,= V2 sin 40- S.0 cos 0)+ (2f cos 0+ sin 4) 50,, integrated version, Hamilton's integral principle, Eq.
(6-) (50).
(63b) (5) As shown here, the generalized principles, Eqs. (29) and

in the constraint conditions (58) and (61). Because 84j (53), are valid for semiholonomic systems. In these gen-
= d( 8qj)/Idt, then, on using the time derivatives of Eqs. (60) eralized principles, the constraints are automatically in-
and (62) together with the relations (58)-(62), 6g, and -g-2 cluded and the displacements ft/j are all free. Equation

reduce to 0 and R(biS4,- 4)8O), respectively. Therefore, the (49) is the equation of state for semiholomic systems,

constraint (61) is semiholonomic. Integration yields the ho- that is, those which satisfy conditions for exactness and

lonomic form x 2 +y 2 -R 2 02 = 0. Because the sum 6(Xkgk) therefore geometrically possible displaced paths.
= 8(X 2g2)-0-O, we cannot use D'Alembert's or Hamilton's (6) Generalized principles are inappropriate for linear non-we cnnotuseD'Almbet's r Hmiltn s holonomic constraints, because the constraint equations

generalized principles, Eqs. (29) and (53), respectively, as

predicted. gk= 0 are not exact and change from varied path to var-

Because the conditions (60) and (62) on the displacements ied path. The underlying multiplier rule then loses valid-
are now all linear, the problem can be solved by ity.D'Alebet's basic principle (14), or by its time-integrated (7) The theory for nonholonomic constraints with a general

DAemer' bai prnil (1) or byistm-itgae velocity dependence remains outside the scope of the
version, Hamilton's integral principle (50). The solution is mosty dapend nc iplpe of thestraightforward and reduces to the standard results8"0 for most fundamental principle, Eq. (14) of D'Alembert. It
horizontal motion (ar= 0). is impossible to extract from the equations gk = 0 of gen-eral nonholonomic constraints the linear relation be-

tween the Sqj's required for the application of
D'Alembert's principle unless the constraints are either

IV. SUMMARY AND CONCLUSIONS linear in velocity or holonomic. Nonholonomic con-
straints are therefore outside the scope of any of the prin-

This paper has presented the basic reason why Hamilton's ciples based on D'Alembert's principle.
variational principle and the more basic principle of
D'Alembert cannot be generalized by substituting the aug- The above conclusions reflect the intrinsic merit of recon-
mented Lagrangian Eq. (8) in either Eq. (2) or Eq. (14) to structing the variational principle, Eq. (2), from the more
cover general nonholonomic constraints, as the multiplier fundamental D'Alembert principle, Eq. (14) via Eq. (47), so
rule5- 7 in the calculus of variations might suggest.- 3 The that the validity of the various stages involved becomes di-
multiplier rule requires that the side conditions gk= 0 be sat- rectly exposed. Pitfalls -3 can easily occur by arbitrarily in-
isfied by all varied paths, which must therefore be geometri- voking the multiplier rule to assert generalized principles
cally possible. The displacements bqj in nonholonomic sys- such as Eqs. (29) and (53), without first ascertaining the criti-
tems violate this rule because they cause nonzero changes cal but hidden condition that the varied paths must be geo-

g~k #0 in the constraint conditions and the displaced paths metrically possible. We have shown here that the condition is
are not geometrically possible. The constraint gk= 0 is satis- satisfied only for holonomic and semiholonomic systems.
fled only by the actual physical path q(t) in configuration General nonholonomic constraints (7) can be analyzed by

space and not by the individual members of the family of other principles13 that involve, for example, the virtual ve-

varied paths for nonholonomic systems. The multiplier rule locity (Jourdain) displacements, constructed by maintaining

cannot therefore be used to generalize Hamilton's or both the configuration q and time t fixed, in contrast to vir-
D'Alembert's principles to cover nonholonomic constraints. tual displacements Sqj which keep only t fixed. The Jourdain
It can however be applied to all holonomic and semiholo- variational principle is the subject of a separate paper.i 4
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APPENDIX: THE MULTIPLIER THEOREM generalized velocities i, then pi4i= 2 T and the least action
principle, Eq. (A5), reduces to the Euler-Lagrange-

We will determine the paths q,(t); i= 1,2,...,n that pro- Maupertuis principle,1,8,11, 13

vide an extremum to the functional

J= fF(q,,,t)dt, C(A1) A ftt22Tdt=O, (A6)

subject to the c<n-finite auxiliary (side) conditions of least action. The multiplier theorem, Eqs. (A3) and (A4),
gk(q,q,t)=0. (k=1,2_..c) (A2) can now be applied to extract Lagrange's equations from Eq.

5-7 (A6). The condition for the variation (A6) is that the Hamil-

A basic theorem 5 7 in the calculus of variations can be tonian H does not depend on time and remains fixed at the
invoked, provided we admit to the variational competition same value for all the paths considered. In the sense that
only those curves q(t) that satisfy fixed end-point conditions (t, -H) are conjugate variables, the principle (A6), which
Sq(t 1,2)=0 and c-finite fixed side conditions as in Eq. (A2). admits paths with the same constant H, is complementary to
The varied curves must all be geometrically possible by sat- Hamilton's variational principle, Eq. (2), which admits only
isfying gk(q+ Sq,l+ 85,t)=gk(q,l,t)+ Sgk(q,l,t)=O, so those paths with the same transit times r=tl-t 2 into the
that 5gk= 0. The physical path q(t) is then determined by variation. For T= T"2, H equals the total energy E= T+ V, so
the extremum determined by the free variation of the modi- that Eq. (A6) becomes modified, under the fixed constraint
fled functional, g = (T+ V) - E =0 for all varied paths, to finding a station-

J r ft2F qi~tdf,2 ary value of
Jt= f1Ft(,,t)d--f2[ F(q, l, t) + X k(t)gk(q, 4, t) ]dt, ayvleo

(A3) A 2t[2T(q,)+(l){T(q,4)+V(q)-E}]dt=O. (A7)

without any side conditions imposed. The physical path q(t)
then satisfies the Euler-Lagrange system of equations, The application 8" 1

,1
3 of this modified version (A7) of the

d (dFt\ dFt Euler-Lagrange-Maupertuis principle leads directly to the

-- -- = 0, (j= 1,2,..., n+c) (A4) standard Lagrange's equations (16), with Q7P=0 for poten-
dt dfj d 77j tial systems.

for the extended set i1-{ql ,q2,.....q,,\1,2... c of (nfo varith e s. e ended se Ft doesnot depend, onI , X2 ,} oft(n • ')Electronic mail: ray.flannery@physics.gatech.edu

+ C) variables. Because Ft does not depend on Xk(t), the 'H. Goldstein. C. Poole, and J. Safko, Classical Dynamics (Addison--

last c members of the set of equations (A4) reproduce the Wesley, New York, 2002), 3rd ed., pp. 46-48. This generalized action
side conditions (A2). The validity of the multiplier theorem, principle is retracted without explanation at (http://
Eqs. (A3) and (A4), rests on the fact that conditions (A2) astro.physics. sc.edu/Goldstein/), pp. 356-360.

must be satisfied by all the varied paths therein, that is, 2G. H. Goedecke, "Undetermined multiplier treatments of the Lagrange
problem," Am. J. Phys. 34, 571-574 (1966).

8gk=0. This condition is satisfied for holonomic and semi- 3j. R. Ray, "Nonholonomic constraints,"Am. J. Phys. 34, 406-408 (1966).
holonomic constraints. It is not satisfied for nonholonomic 4

j. R. Ray, "Erratum: Nonholonomic constraints," Am. J. Phys. 34, 1202-

constraints because 5g9#k0 for this case; the condition gk 1203 (1966).

= 0 is satisfied only by the physical path to be eventually 5D. A. Pierre, Optimization Theory with Applications (Dover, New York,
1986), p. 92.determined. The theorem is therefore irrelevant to nonholo- 61. M. Gelfand and S. Fomin, Calculus of Variations (Dover, New York,nomic systems. 2000), p. 48.
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related principle" 1,8,1 p. 136.

8R. M. Rosenberg, Analytical Dynamics of Discrete Systems (Plenum, New
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of least abbreviated action SA,, valid for varied curves, all 10j. V. Jose and E. J. Saletan, Classical Dynamics (Cambridge UP, Cam-
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through th obend pointse cthat isHamilto n in tL. A. Pars, An Introduction to the Calculus of Variations (Wiley, New
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form to Eqs. (50) and (51). The A operator causes nonsimul- 121. Gatland, "Nonholonomic constraints: A test case," Am. J. Phys. 72,
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An exact analytical classical solution for the electronic terms of circular Rydberg states (CRS) in the
presence of a magnetic field B is obtained for two-Coulomb-center systems. The classical electronic terms are
shown to be significantly affected by the magnetic field. In particular, a sufficiently strong magnetic field is

shown to cause the appearance of CRS above the ionization threshold. These CRS are the classical molecular

counterparts of the quantal atomic quasi-Landau levels (resonances). Study of the stability of the nuclear
motion in this system reveals that the system in CRS is, in the absence of the magnetic field, not really a
molecule, but only a quasimolecule with antibonding molecular orbitals. We also find that the magnetic field
creates a deep minimum in one of the branches of the effective potential of the relative motion of the nuclei,
and thereby stabilizes the nuclear motion. We have therefore shown that a magnetic field can transform the
quasimolecule into a real, classically described molecule where one of the molecular orbitals becomes bonding.
This result reveals a phenomenon-the magnetically controlled stabilization of the quasimolecules in CRS-
which is appropriate for future experimental studies.

DOI: 10.1103/PhysRcvA.73.013405 PACS number(s): 32.60.+i, 33.15.-e, 31.15.-p, 52.25.-b

I. INTRODUCTION find that the CRS system, in the absence of the magnetic
field, is not a stable molecule, but is only a quasimolecule

Circular Rydberg states (CRS) of atomic and molecular with antibonding molecular orbitals. A similar classical result
systems, with only one electron, correspond to Imil=n-I was obtained by Pauli [10] for the hydrogen molecular-ion
> 1, where n and m are the principal and magnetic electronic H2'. We find that a magnetic field creates a deep minimum in
quantum numbers, respectively. They have been extensively one of the branches of the effective potential V(R,B) for
studied [1-4] both theoretically and experimentally for sev- relative motion of the nuclei, so as to render stable nuclear
eral reasons: (a) CRS have long radiative lifetimes and motion. The magnetic field can therefore be used to trans-
highly anisotropic collision cross sections, thereby enabling form a quasimolecule into a real CRS molecule with a bond-
experiments on inhibited spontaneous emission and cold ing molecular orbital. This finding initiates a phenomenon-
Rydberg gases [5,6], (b) classical CRS correspond to quantal the magnetically-controlled stabilization of the CRS
coherent states, objects of fundamental importance, and (c) a quasimolecules-suitable for future experimental studies.
classical description of CRS is the primary term in the quan-
tal method based on the 1/n expansion (see, e.g. Ref. [7] and
references therein). In the present paper we focus on the II. ELECTRONIC TERMS IN A MAGNETIC FIELD

analytical classical description of CRS of two-Coulomb- Let the charge Z of the two-Coulomb-center system be
center systems in a magnetic field B parallel to the internu- fixed at the origin and the charge Z' be located along the OZ
clear axis. The system consists of two nuclei of charges Ze axis at nuclear separation R. For simplicity, let the plane of
and Z'e, separated by a distance R, and one electron and is the electron's circular orbit of radius p centered at z be per-
denoted as ZeZ'. Analytical results for the electronic terms pendicular to the internuclear axis OZ. For z <R or for (R
E(R) of the ZeZ' system for the field-free case were obtained -z) < R when the electron is mainly bound to the Z or the Z'
[8,9] from first principles within a purely classical approach. ion and is perturbed by the other fully stripped ion, these
The classical approach reproduces [8,9] several electronic circular orbits depict Stark states which correspond classi-
tenns and two of these terms undergo a V-shape crossing at cally to zero projection of the Runge-Lenz vector [11] on the
separation R% so that CRS cannot exist for R<R*. axis OZ and quantally to zero electric quantum number k

In the present paper, an exact analytical classical solution =nI-n2, where it and n2 are the parabolic quantum numbers
is obtained for the electronic ternis E(R,B) for CRS of the [12]. The classical Hamiltonian for fixed R of the ZeZ' sys-
ZeZ' system in the presence of a magnetic field B. The so- tem in the presence of a uniform magnetic field B parallel to
lution is exact and is valid for any strength of the magnetic the internuclear axis is given in au by
field. We also study how the classical electronic terms are
influenced by the magnetic field, including the case of a H(p,z) = M 21(2p 2) - Z/(p 2 

+ Z2)112- Z'/[p2 
+ (z - R) 2]1/2

strong field. This is a fundamental problem in its own right. + fM + fj2p2/2, fl = B/(2c). (l)
The theory is then used to explore the stability of the

nuclear motion in the ZeZ' system. It is found that the term Here M is the constant z component of the angular momen-
E(R,B) in the effective potential V(R,B)=ZZ'/R+E(R,B) tum and ft is the Larmor frequency expressed in practical
for the relative motion of the nuclei plays a crucial role. We units as fl(s-i) = 8.794 X 106 B(G).
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Introduce the following scaled quantities: h

b - Z'/Z, u--p/R, w=--z/R, ?n = M/(ZR) 12, -0.5 1 2 3 4 5

-- M3/Z2, h = HM2/Z 2, (2)

so that the scaled Hamiltonian is

h = (u,w,to) = m2E(u,w, to), -2
-2.5

E(u,w,wo) - m2/(2u 2) - 1/(u 2 + w2)1/2 - b/[U2 + (1 -W)2]12

+ Winm2 + o 2u2/(2m 6). (3) -3.5

The conditions for dynamic equilibrium are FIG. 1. The scaled electronic energy h versus the scaled inter-

NhlOw = m2{wI(u 2 + w2)3/2- b(1 - w)l[u2 + (1 - w)2]3/2= 0 nuclear distance r for the ratio of the nuclear charges b=3/2 at the
absence of the magnetic field [h and r are defined by Eqs. (2) and

(4) (12), respectively].

and
parameters, Eq. (8) determines the equilibrium value w0 of

(ahlau = n2{- 2u3 +( + + + bul[u2 + (1 - w)l]12 the scaled z coordinate of the orbital plane.

+ 2u/Im 6} = 0. (5) The internuclear distance R as noted above was consid-
ered to be "frozen." In order to reproduce the electronic

Equation (4) shows that equilibrium along the intemu- terms, i.e., the dependence of the electronic energy on the
clear axis does not depend on the scaled magnetic field co. In internuclear distance, one should now allow R to be a slowly
terms of the equilibrium value wo of w, the equilibrium value varying adiabatic quantity (slowly varying with respect to
of u can therefore be expressed as the electronic motion, as in the Born-Oppenheimer approach

u(w 0,b) = {[w 0(1 - w0 ) 2] 2/3 
- b 2 13 w1}/ 2/ [13]).

We consider energy terms of the same symmetry which,
{b211 - [w0/(l- Wo)] 2/3}1/ 2 . (6) for the quantal ZeZ' problem, means terms with the same

magnetic quantum number M [14-18]. Therefore, in our
which only exists within the following "allowed ranges" classical ZeZ' problem, from now on we consider fixed pro-

0 Wo < bl(l + b) and 1/(1 + b 112) __ w0 1, b < 1, jection of the angular momentum M and study the behavior
of the classical energy keeping M constant.

0 wo w- 1/(1 + b1"2 ) and b/(l + b) < w0 1, b > 1, Introduce the scaled internuclear distance
0•<w0•<1, b=l ()r-RZIM2 (12)

of w0 . Equation (5), represents the condition for equilibrium which, under the fourth relation in Eq. (2), reduces to

in the orbital plane and can be rewritten in the form r(wo,b, to) = l/m 2 (wo,b, a)). (13)

m(wo, b,to) = ± {f/4 + (f2/4 + j)1/2/2 On substituting W=Wo into Eq. (3), then

+[f2/2 - j + (f3/4)/(fz14 +j) 1t/2}"1, h(w 0 ,b, to)= m2 (w0,b, to)e[u(w0 ,b),wo, to]. (14)

(8) Thus, for any positive ratio of the nuclear charges b >0

where, in terms of u(wo,b), given by Eq. (6), and for any value of the scaled magnetic field to, the depen-
dence of the scaled energy h on the scaled internuclear dis-

f(wo,b, to) =- u4(wo,b)[[uZ(wo, b) + wo] - tance r is determined by Eqs. (13) and (14) in terms of the

S /[U2  , ( W2)] 312  (9) parameter wo, which takes all values from the allowed ranges
+bu(wo,b)/[u(wo, b)+ (1- w 2 ( specified by Eq. (7), i.e., Eqs. (13) and (14) determine the

and classical electronic energy terms for any strength of the mag-
j(wo.b, to) =- [u 4(wo,b)w 2118]" 3g - (4/g)[u0(wo,b)w4/3]I"3, netic field, including the strong field case.

Figure 1 shows the scaled electronic energy h versus the
(10) scaled internuclear distance r for b=3/2 in the absence of

with magnetic field. There are three terms of the same symmetry,
a totally counterintuitive result because there is more than

g(wo,b,-) 1-9f 2 + [81f4 + 768u 4(wo,b)t 21 211/3. one classical energy term. Moreover, two of these classical
(11) energy terms undergo a V-shape crossing.

We note that the upper and middle energy terms terminate
The plus and minus signs in Eq. (8) correspond, respectively, at some r= rmin, so that there are no CRS at r< rrin for these
to the positive and negative projections of the angular mo- two energy terms. The classical energy of the CRS acquires
mentum along the magnetic field. For each set {b,m,w} of an imaginary part at r <rmin, corresponding quantally to vir-
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h h
5

4

-3

-15

1 2 3 r

FIG. 2. Same as in Fig. 1, but at the scaled magnetic field o)= FIG. 3. Same as in Fig. 2, but at o=+2.7.
+1.1. We note that o>0 corresponds to BM>0, while &)<0 cor-
responds to BM < 0; here B and M are z projections of the magnetic We now "turn on" the magnetic field-in contrast to the
field and of the angular momentum, respectively; the Oz axis is We of p turs [ n2 the scaled elctr o nicdirected from the charge Z toward the charge Z'. scope of papers [8,9]. Figure 2 shows the scaled electronic

energy h versus the scaled internuclear distance r for b
=3/2 at to=+l.1, i.e., at a moderate value of the magnetic

tual states or resonances. There may well be noncircular field. We note that to>O corresponds to BM>O, while wo
Rydberg states at r< rmin in the same energy range, but this <0 corresponds to BM < 0; remember B and M are the z
would be beyond the scope of the present paper. projections of the magnetic field and of the angular momen-

We emphasize that the above example of ZIZ=312 is tum, respectively, and that the Oz axis is directed from the
fully representative. In fact, for any pair of Z and Z' 0Z, charge Z toward the charge Z'.
there are three classical energy terms of the same symmetry Figure 2 shows that the magnetic field corresponding to
and the upper term always crosses the middle term. (For w= + 1.1 and higher values, under the condition BM>O, lifts
Z' =Z there is only one term in the corresponding plot and no the entire upper and middle energy terms into the continuum.
crossing, as expected.) Figure 3 shows the scaled electronic energy h versus the

Analysis, previously published [8,9], provided the follow- scaled internuclear distance r for b=3/2 at wo= +2.7, i.e., at a
ing reason for these three energy terms. The lower term, as larger value of the magnetic field. It is seen that the magnetic
R-- * corresponds to the energy E--+-(Zmax/M) 212 of the field of this value (and of higher values), under the condition
hydrogen-like ion with nuclear charge Zmax-max(Z',Z) per- BM>O, lifts all three energy terms into the continuum.
turbed slightly by the other charge Zminmin(Z' ,Z). As R These CRS above the ionization threshold, shown in Figs.
-- 0, the lower term translates into the energy E---(Z 2 and 3, are classical molecular counterparts of the quantal
+Z') 2 /(2M 2) of the hydrogenlike ion of the nuclear charge atomic quasi-Landau levels or resonances. The latter were
Z+Z', iLe., to the united-atom limit [14-18]. discovered experimentally by Garton and Tomkins [19] (for

The middle term as R--* • corresponds to the energy E theoretical references on atomic quasi-Landau resonances,
_-(Zm,,/M) 2/2 of the hydrogenlike ion of nuclear charge see, e.g., the book [20]).

Zmin slightly perturbed by the charge Z,,,,. The upper term,
as R--- x, evolves into a near-zero-energy state. 111. MAGNETICALLY CONTROLLED STABILIZATION

The analysis presented in Ref. [9] was not confined to OF QUASIMOLECULES
circular orbits of the electron. In order to make the present
work more transparent, we briefly outline here the scheme of The stability of the nuclear motion in the ZeZ' system is
that analysis. In cylindrical coordinates (z,p, 0), using the now explored. The electronic energy E(R,B) becomes a cru-
axial symmetry of the problem, the z and p motions, due to cial part of the effective internuclear potential
axial symmetry, can be separated from the q5 motion. The 0 V(RB) = ZZ'/R + E(RB) (15)
motion can be determined from the calculated p motion.
Equilibrium points of the two-dimensional motion in the zp for the relative motion of the nuclei. The scaled internuclear
space were studied and a condition distinguishing between potential
two physically different cases where the effective potential
energy (1) has a two-dimensional minimum in the zp space v =- VM 2 /Z 2 , (16)
and (2) has a saddle point in the zp space was explicitly then reduces [cf. Eq. (14)] to
derived. In particular, it turned out that the boundary between
these two cases corresponds to the point of crossing of the v(wo, b,Z',wo) = m2(wo,b, o){4e[u(w 0 ,b),w 0 , &] + Z'}.
upper and middle energy terms. For stable motion, the tra- (17)
jectory was found [9] to be a helix on the surface of a cone,
with axis coinciding with the internuclear axis. In this helical For any set {b, Z, (o}, Eqs. (13) and (17) therefore deter-
state, the electron, while spiraling on the surface of the cone, mines the dependence of the scaled internuclear potential v
oscillates between two end circles which result from cutting on the scaled internuclear distance r in terms of the param-
the cone by two parallel planes perpendicular to its axis. eter w0 which takes all values within the allowed ranges

013405-3



M. R. FLANNERY AND E. OKS PHYSICAL REVIEW A 73, 013405 (2006)

V V
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0.1 -0.1

10 15 20 0-0.2

-0.2 -0.3
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FIG. 4. The upper and middle branches of the scaled effective FIG. 6. The same as in Fig. 4, but at the scaled magnetic field
internuclear potential v [defined by Eqs. (15) and (16)] versus the w=-l.
scaled internuclear distance r for Z=2 and Z' =3 at the absence of
the magnetic field. &o=-0.3 (with BM<0). It is seen that the minimum in the

upper branch became significantly deeper and moved to-
wards lower r.

Figure 6 shows the same as Fig. 5, but for w=-l. As the
specified by Eq. (7), i.e., Eqs. (13) and (17) determine the magnetic field increased, it is seen that the minimum in the
classical effective internuclear potential for any strength of upper branch becomes further deepened and moves even
the magnetic field, including the strong field case. closer to the origin.

Figure 4 shows the upper and middle branches of the The "cusp" formed by the upper and middle branches in

scaled effective internuclear potential v versus the scaled in- Figs. 4-6 reflects the fact that the upper and middle energy

ternuclear distance r for Z= 2 and Z'= 3 in the absence of the terms for the corresponding electronic terms terminate at
magnetic field. It is seen for any starting point at the middle some r=rmin--as already noted in Sec. II. Although present

branch that the system would "find" the way to lowering its in CRS, this cusp may not appear in noncircular Rydberg

potential energy without any obstacle and would end up at an states, a topic beyond the scope of the present CRS study.
infinitely large internuclear distance, thereby resulting in dis- Figures 4-6 reveal magnetic stabilization of the nuclear

sociation. The same is true for the lower branch (not shown ,notion for the case of BM < 0. Indeed, in the absence of the

in Fig. 4). In other words, in the absence of the magnetic magnetic field, the potential well is very shallow. It is known

field, the CRS system, associated with the middle or lower that too shallow potential wells do not have any quantal dis-

branches of the effective potential energy, is not really a crete energy levels (see, e.g., Ref. [12]). Moreover, if this

molecule, but only a quasimolecule because the molecular system is embedded in a plasma, then due to the known

orbital is antibonding. As we noted, the corresponding clas- phenomenon of the "continuum lowering" by the plasma en-

sical result was obtained previously by Pauli [10] for the vironment (see, e.g., books or reviews [21-23] and refer-
molecular hydrogen ion H. The upper branch in Fig. 4 ences therein), the minimum of this very shallow potentialmoeua yroe o •. h pe rac nFg well in Fig. 4 could be "absorbed" by the lowered con-

displays a very shallow minimum of v=-0.0688 located at wl nFg ol e"bobd ytelwrdcn
di s a vy stinuum. The magnetic field dramatically deepens the poten-
r=8.7, n tial well and therefore stabilizes the system for the case of

We now turn on' the magnetic field. Figure 5 shows the BM<0. The magnetic field can therefore transform the qua-
upper and middle branches of the scaled effective internu- simolecule into a real, classically described molecule so that
clear potential v versus the scaled internuclear distance r for the molecular orbital becomes bonding.
Z=2 and Z'=3 at a relatively small scaled magnetic field The particular example of the system chosen for Figs. 4-6

corresponds to the CRS of an electron in the vicinity of the
nuclei of He and Li. Both nuclei are usually present in mag-
netic fusion plasmas. Moreover, in such plasmas, Rydberg

v states of either of these nuclei result from charge exchange

4 6 8 10 12r with ions of higher nuclear charge that are always present in

-0.05 magnetic fusion plasmas. Relatively large magnetic-field
strengths are also present. It should be therefore possible to

-0.1 observe magnetic stabilization of the quasimolecule HeLi4÷

-0.15 present in these practically important experimental devices.
The present analysis has also shown that a similar mag-

-0.21 netic stabilization of Rydberg quasimolecules in CRS is dis-

-0.25 played by other (though not all) ZeZ' systems characterized

1The scaled magnetic field IwoI=0.3 would correspond to the mag-
FIG. 5. The same as in Fig. 4, but at the scaled magnetic field netic field B- 105 G for IMI -30. The magnetic field B-10 5 G

to=-0.3 (note that BM<0). would be typical for magnetic fusion devices under construction.
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by the ratio of the nuclear charges in the range: I <Z'/Z minimum. In the absence of the magnetic field, the system in
< 3. Our results open up this phenomenon for possible fur- CRS is therefore not really a molecule, but only a quasimol-
ther theoretical and experimental investigation. ecule and the molecular orbitals are antibonding. The mag-

netic field is shown to dramatically deepen the potential well,
IV. CONCLUSIONS corresponding to the third branch, so that the nuclear motion

of the system is therefore stabilized for the case of BM <O.
For two-Coulomb-center systems (ZeZ' systems), an ex- We have demonstrated that the magnetic field can transform

act analytical classical solution for the electronic terms the quasimolecule into a real, classically described molecule
E(R,B) of CRS at the presence of the magnetic field B has where one of the molecular orbitals becomes bonding.
been obtained. The solution, being exact, is valid for any For example, it should be possible to observe the mag-
strength of the magnetic field. We have shown that the clas- netic stabilization of the quasimolecule HeLi4a present in
sical electronic terms are significantly affected by the mag- magnetic fusion devices. Some other highly excited ZeZ'
netic field. In particular, we have demonstrated that a suffi- systems, characterized by the ratio of the nuclear charges in
ciently strong magnetic field causes the appearance of CRS the range 1 <Z'/Z< 3, can also exhibit magnetic stabiliza-
above the ionization threshold-for the case of BM>O. tion. Our present findings have introduced a phenomenon-
These CRS are classical molecular counterparts of the quan- magnetically controlled stabilization of the quasimolecules
tal atomic quasi-Landau levels (or resonances) discovered in CRS-for future theoretical and experimental studies.
experimentally by Garton and Tomkins [19].

As an application of the above results, we studied the
stability of the nuclear motion in the ZeZ' system. We found
that the nuclear motion for B=0 is unstable: two out of three This work is supported by AFOSR Grant No. 49620-02-
branches of the effective potential energy do not have any 1-0338 and NSF Grant No. 04-00438 to Georgia Institute of
minimum, while the third branch has only a very shallow Technology.
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Abstract

As shown by Pauli [Z. Phys. 36, 336 (1926)], the electric dipole operator r can be replaced by

the Runge-Lenz vector A when operating within the degenerate n-manifold of hydrogenic states of

principal quantum number n. We seek to develop similar rules for higher multipole operators by

expressing equivalent operators in terms only of the two vector constants of motion - the orbital

angular momentum L and the Runge-Lenz vector A - appropriate to the degenerate hydrogenic

shell. Equivalence of two operators means here that they yield identical matrix elements within a

subspace of Hilbert space that corresponds to fixed n. Such equivalent operator techniques permit

direct algebraic calculation of perturbations of Rydberg atoms by external fields and often exact

analytical results for transition probabilities. Explicit expressions for equivalent quadrupole and

octupole operators are derived, examples are provided and general aspects of the problem are

discussed.

PACS numbers: 34.60.+z,34.10.+x,31.15.Hz,32.60.+i



I. INTRODUCTION

Highly excited Rydberg states with the same principal quantum number n have small

deviations from pure hydrogenic behavior. The degenerate shell of these states forms the

basis of a representation of the 0(4) symmetry group [1] associated with the 1/r Coulomb

potential governing the dynamics of the Rydberg electron. Many structural properties of

the Rydberg atom can then be calculated by using algebraic rules and group representation

techniques. These features combine mathematical beauty with pragmatic usefulness. More-

over, such algebraic techniques facilitate direct quantal and classical solution of Rydberg

atoms in static external electric and magnetic fields [2], slow collisions with Rydberg atoms

[3-5], and intrashell dynamics of a Rydberg atom in time-dependent electric and magnetic

field [6]. For example, analytical probabilities have been derived [3-5], without the need for

any perturbative and numerical analysis, for the full array of f -* f' transitions in atomic hy-

drogen H(nf) induced by a time-varying weak electric field generated by adiabatic collision

with slow ions.

The dimension of the degenerate subspace grows as n 2 (without electron spin) and tra-

ditional close-coupling (R-matrix) calculations using spatial wave functions become pro-

hibitively difficult and ultimately impractical, either because of the sheer dimension of the

space or because of the large number of oscillations. Rydberg states with n as large as sev-

eral hundred are now accessible to observations and experiments. The group representation

technique may therefore offer the only practical and effective way of solving problems in-

volving such Rydberg states. In so doing, some essential underlying physics can be exposed,

as an additional asset.

In particular, the theory of a Rydberg atom in weak external electric and magnetic

fields is reduced to an algebraic problem that is extremely well poised towards extracting

both quantitative analytical results and qualitative insight. This is possible provided the

necessary operators of interaction with the fields can be represented in terms of integrals of

motion- the angular momentum operator L (common to all central field problems) and the

Runge-Lenz vector A (specific to the Coulomb potential alone). This key step, basic to the

subsequent algebraic construction, can be only taken when the dynamics becomes restricted

to the subspace of energy degenerate states i.e., when the external perturbation is so weak

that it does not induce n - n' coupling among shells of different energy.

2



All of the above work [2-6] was based on a paper [7], as old as quantum mechanics. There,

Pauli [7] has shown that the electric dipole operator r becomes identical with the Runge-

Lenz vector when the two operators are restricted to an energy shell with fixed principal

quantum number n. This can most easily be seen by comparing all the matrix elements of

these operators between states within the same energy shell. The power of this result comes

from its general validity and utility for any shell with quantum number n.

The advantage of expressing the intrashell dynamics of Rydberg atoms in terms of the

A, L set of constants for electronic coulombic motion has already been demonstrated [3-5]

for collisional e mixing transitions induced by a projectile charge-Rydberg dipole interaction.

Also the interaction between two Stark-stretched (polar) Rydberg atoms has recently been

expressed [8] in terms of interactions between the permanent multipoles of each atom. A

basic question now arises quite naturally from these studies [3-5, 8]. It is one which does not

appear to have been previously posed or addressed. Can all higher multipole interactions be

equivalently expressed solely in terms of the A, L integrals of motion on the energy shell?

In an effort to answer this, the present paper considers general equivalent multipole

operators in Sections II and III. A procedure is then presented and applied, with examples,

to the explicit determination in Sections IV, V and VI of the equivalent operators for the

dipole, quadrupole and octupole moments, respectively. The algebraic evaluation of the

operators in terms of (A, L) is conducted in the Appendices. Our eventual aim is to provide,

if possible, the full solution for general multipoles. Atomic units are used throughout the

paper, unless otherwise noted.

II. INTRASHELL EQUIVALENT OPERATORS

The angular momentum L and the unrestricted Runge-Lenz vector

U =1(p x L - L x p) -r

2 r

are constants of motion for the internal Hamiltonian H = p2/2 - 1/r of the Rydberg atom.

A more convenient form for the unrestricted Runge-Lenz vector is
1

U -= rp - p(r . p) + rH.
2

The vector operators L and U do not close under commutation to form a Lie algebra because

[Ui, Uj] = (-2g)iCijkLk,



where cijk is the Levi-Civita antisymmetric symbol for indices i, j, k = 1, 2, 3. If, however, the

action of operators U is restricted to the Hilbert subspace of states with principle quantum

number n, then the Runge-Lenz vector for bound states of energy En can be defined as

A = 1 [1rp 2 p(r. p) +rE . (1)

The six components of the vector operators A and L are generators of the symmetry group

SO(4) of proper rotation in four dimensions. They satisfy the commutation relations -

[Ai, Aj] = ieijkLk, [Li, Lj] = icijkLk and [Li, Aj] = ic~3kAk. The discrete part of the hydro-

genic spectrum is then exhibited [7] by the theory of irreducible representations of SO(4).

When redefined by Eq. (1), the Runge-Lenz vector A acts only on states within the n-

shell and has non-zero matrix elements only between states within the n-shell. If Pn is the

projector onto the n-shell subspace then one can write

U
A= P. U Pn

-, 2H

The operators A and U/ -f-2H are equivalent because all their matrix elements are equal

when evaluated between all states within the same n-shell. In general, the operators A and

B are equivalent within the n-shell if all their intrashell matrix elements are equal

(nylAln-y') = (n71Blny')• (2)

The quantum numbers -y label the basis set which spans the n2 degenerate subspace. Spheri-

cal (n, f, m), parabolic (nl, n2 , M), Stark (n, k, mn) or algebraic (n, M1 , in2 ) quantum numbers

are all useful hydrogenic sets (see, e.g., Ref [8], Table 1). When an operator has an n-shell

equivalent which can be expressed in terms of the constants of motion L and A, then its

intrashell matrix elements are easily calculated in any basis of states, using the SO(4) irre-

ducible matrix representations. For example, Pauli [7] has proven that

3n
,rPn 3n- A ,

2

so that the dipole operator r within the n-shell is equivalent to -3n/2A. The dipole matrix

elements between all (f, m) states of the same n are therefore simply related to the matrix

elements of A, which are then algebraically determined most effectively in the algebraic or

Stark bases.
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III. MULTIPOLE AND MULTIPOLE-TYPE OPERATORS

Many applications require calculation of matrix elements of higher multipole operators

and therefore it is useful to find their n-shell equivalents. The spherical-coordinate repre-

sentation of the multipole operator of order A is

Q(A) •- 4•r r-•Y\'(#) (3)

A 2A +

where r is the electron position vector, with magnitude r and direction i, and where p are

the 2A + 1 components with -A < pt _ A. Eq. (3) for A = 1, 2, 3 provides the dipole,

quadrupole and octupole operators, respectively. In general, as a function of coordinates,

the multipole Q(,A) is a solution of the Laplace equation in the entire free space (excluding

the singular r = 0 point).

Another definition [9], which directly reveals the irreducible tensor properties of the

muitipole operators, is

'() /(2A - 1)!! r(2) (3C) (9r(A)(4Q(' ( A! ... {{r® ... r} , (4)

which represents Q as a multiple irreducible tensor product of vector r over itself A times. A

multipole-type operator is obtained if the identical factors r are replaced by different vectors

a, b, c .... Theory based on this definition will not be developed here but will be the

subject of future investigation.

Representation of the multipole operator by its cartesian components provide several

advantages for the approach taken in the present paper. The tensor q(') of rank A with

cartesian components
(-1)Ar2A+1 (5)

qi 1 i2" (2A -1)!! ci, A2"". i•'r
is a harmonic polynomial of power A in the cartesian components x3 (j = 1, 2, 3) of the

electronic position vector r. Harmonic polynomials, by definition, satisfy Laplace equation.

For A > 1, the tensor (5) can be expanded as a sum of terms, as a result of taking successive

derivatives. One of the terms is XixXi2 ... xi,, while the remaining terms contain at least

one Kronecker delta symbol for a pair of indices. However, not all 31 components of the

tensor q(A) are independent because the tensor is fully symmetrical with regard to index

permutation and has zero trace when any pair of indices is contracted. The fully symmetric

tensor has (•+2) independent components and there are (2) pairs of indices for which

5



the trace is zero. The tensor q(') has therefore only (A2) _ (•) - 2, + 1 independent

components. The first three multipole operators have the following cartesian components

i = xi, (6)

(3) 1 2
.ij k = XiXjXk - r (Xi5Jk±Xj~ik+rke5 j) (8)

for the dipole, quadrupole and octupole moments, respectively. An alternative definition for

the cartesian components (5) is obtained by starting from the monomial xi1 xi ... xi, and

constructing from it the tensor components qjj 2...i , by adding terms such that the result

has both the required symmetry and the zero trace condition for all pairs of indices. As an

example, the octupole operator is explicitly derived via this procedure in section VI. This

is also the way one can construct multipole-type operators starting from a set of vectors (L

and A in our present case) which replace the position vector. For example, if one begins

with vectors a, b, c, ... , the multipole-type operator contains the cartesian components

ai1 bi2 ci, and the remaining terms are obtained by permutations and contractions. Care

must however be exercised when the operators do not commute.

A relation between the spherical (3) and cartesian (5) components of the multipole op-

erator is facilitated by using the following definition for the spherical harmonics

(yi- 2Li + in)!)YLM(p) = (--1)L-M rI L L 1M /

Y4L ) (L)+ .M)!(L - m)! (a + ia2)MOLM 1

so that
Q(I)M(2L - 1)!! MQ•=[ L+M[(LM)!]112 qi Il... 12 ... 23 ... 3

M-k k L-M

provides the required result. Explicit relations are

Q?() =q()

Q(1) - -(q(') + iqý1))/v'4, (9)

for the dipole operator,

Q(2) = 3 (2)q3

Q(2) = 1(3 (q2) (2)) ,

(qj + 2iq~i) q(;)) , (10)
2 2

6



for the quadrupole operator and

Q(3) = 5 (3)

0 _- q333 ,

Q(3) = .f
__ 33( (3) + .i (3))

-- -- ,q133 "] '233)

2 = - q13 + 2q123 -q223),

3 - 4 , q,11 + 3iqll2 - 3q122 - iq222) (11)

for the octupole operator. We now seek to obtain equivalent multipole operators within the

n-shell by constructing general multipole-type operators

P,,Q(\)P_ = J-(\)(L, A)

from the two vector constants of motion L and A. Because the multipole operator Q(A) of

order A is a uniform function of coordinates of order A, coordinate scaling r -> 'yr implies

that the operator scales as Q(o) - -yAQ(o). We therefore require a similar property for the

equivalent operator, such that F contains products of A terms, where each of them can be

either L or A. Further restrictions follow from parity (coordinate-inversion) considerations-

the parity of Q(\) is (-l)\, the parity of A is -1 and the parity of L is +1. Multipoles

of even order may therefore contain only products of even number of L operators. The

equivalent dipole operator (with odd parity) is expressed only in terms of A. The equivalent

quadrupole operator (even-parity) has terms AA and LL, but not the odd-parity terms with

AL. Because of parity considerations, the equivalent octupole operator can only contain

the two odd-parity terms, AAA and ALL, while the even parity term AAL is forbidden.

IV. EQUIVALENT DIPOLE OPERATOR

Using the general procedure outlined in the previous section, we seek the operator equiv-

alent to the dipole operator (6) in the form

Pq()P• = PrP• = aA + bL.

The operator L has the opposite parity of q(') and is therefore precluded by setting b = 0.

The coefficient a is calculated by comparing the matrix elements of A and r. Because of

identical rotation properties of the two vectors, it is sufficient to calculate the matrix elements

7



only along one direction. It is convenient to choose this direction as the z-direction. Because

of the selection rules, the dipole operator r and the Runge-Lenz vector A have non-zero

matrix elements only between states with angular momentum quantum numbers differing

by one unit (V' = f 1).

Using Eq. (9), the intrashell matrix elements of the z-component of the dipole are

3 (n2 - e2)(f 2 -in 2 )
(nf - lmlzlnfm) = (P&e-jrIRn)(Y1-1mIYI°IYtm) 2- 2n (2f- 1) (2t-'1 (12)

where the results (A3) and (All) of Appendix A have been used.

On the other hand, the Runge-Lenz component A, has the matrix elements

(nf - 1mIA~nfm) - W(n2 - t 2)(t 2 - M 2 )
n(2 - 1) (2±l• ) f (13)

easily deduced from Eq. (A17).

By comparing Eqs.(12) and (13), the coefficient is a = -3n/2. This reproduces, as

expected, the result r -- -3n/2A originally obtained by Pauli [7]. The position operator

r can be therefore replaced by the Runge-Lenz vector, when restricted to states within the

n-shell. This result is sometimes referred to as Pauli's replacement rule, which, in addition

to Pauli's original proof [7] can also be derived from other approaches, as in Refs. [2, 3]. It

is useful to note that the cartesian components commute when unrestricted ([x, y] = 0, for

example), but behave as angular momentum vectors when restricted to the n-shell, because

[Ax, Ay] = iLz.

V. EQUIVALENT QUADRUPOLE OPERATOR

The quadrupole operator is a rank 2 tensor with cartesian components qik defined by

Eq. (7). It is symmetrical (qik = qki) and has zero trace (Ei qij = 0). Two quadrupole-like

operators, symmetrical, with zero trace and even parity, can be constructed from A and L

and can contribute to the equivalent quadrupole operator. They are

0 -p = 1 (AA Aj) - 1A2 6,j, (14)

and

-1 1( +L !L2 (15)
Z 2 (L2Lj + L 3 (15)

8



where the end Jij-term insures zero trace. Mixed terms of the form AjLj have odd parity (sign

changes under coordinate inversion) and are therefore precluded. The equivalent quadrupole

operator has therefore the general form

P q(2)Pn = aO1) - b O(2),

where the coefficients a and b are determined by comparing the matrix elements of specific

tensor components, between states with angular momentum quantum number differing by

0 or 2 units, i.e. (V' = t, f ± 2).

It is convenient to calculate the matrix elements of the zz, or 33, components of the

quadrupole and quadrupole-like operators and then to solve the set of equations

(nemjqi3)nem) = a(nfmIO(' nem) + b(ngmIO•3 nem)

(nf'mjq3) lrntm) = a(nf'mIO I)ntim) + b(nre'mlO•I nfm)

for the coefficients a and b, where f' = F - 2.

A. Implementation

Explicit calculations of the above matrix elements of q2), O(l) and O$2) yield the results

(A20), (A21) and (A24)-(A23), derived in Appendix A. The coefficients are thus calculated

as a = 5n 2/2 and b = -n 2 /2. The quadrupole equivalent-operator can therefore be expressed

exclusively in terms of the L and A operators as,

Pnqij -- Pn Xi2 j - 1 r2ij Pn

-5-n AjAj ± AjA, - 2A2 j) -n 2 (LiLj + LjLj_ 2 L2 ij) (16)5n4 (Aii+A~ 3A 4j -3

This is our desired rule which replaces the cartesian quadrupole components (7) by Eq. (16).

From this general rule, the equivalent-operator relation

2• = 2• +2 = 2 _ z2 = n 2 2 22 ) 217
,2 _X +Y r2 Z9 ~i2 (n2 +3+ L2 +4A2 5A2) (17)

for the cylindrical diagonal element squared is readily deduced. Expression (17), originally

proven by Solov'ev [10], was key to theoretical development for the hydrogen atom in weak

magnetic fields and in crossed electric and magnetic fields (see [11], for example). The

explicit rule (16) provides, of course, all five independent quadrupole tensor elements.
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B. Equivalent operator for ntm -- nem' transitions

It is worth noting that a construction was developed earlier for the 3D rotational SO(3)

group with generator L and the unit vector n = r/r, instead of the SO(4) group vector r.

In one of their problems [13], Landau and Lifshitz derive the equivalent operator relation

nink - 1 6ik = - 1 LiLk + LkLi- L2Lik (18)

3 (2t -1) (2f +3) L

to be compared with our equivalent operator (16). This relation (18) is valid for the Hilbert

space of states on a unit sphere, within the subspace of states with definite total angular

momentum f (but with different m) i. e., for nfm -* nfm' transitions. The definition of

equivalent operators for this SO(3) group is

(n&yJAgney') = (nyBn' ') (19)

in contrast to the definition (2) of hydrogenic SO(4) equivalent operators. The present study

provides the multipole operators, i.e. irreducible tensors built from electron coordinate r,

in terms of the hydrogenic SO(4) symmetry group generators L and A which permit all

intrashell nem --* nt'm' transitions.

C. Quadrupole operator in the SO(3) 0 SO(3) representation

In the Coulomb problem, it is conventional to replace L and A by a pair of integrals of

motion, IV) and V(2) related by

IM) = I(L+A), 1(2) (LA);
2 2

L = I( 1)+1( 2) A=I) 1 _I(2)

The operators V() and I(2) possess all the properties enjoyed by independent angular mo-

mentum quantum-mechanical operators

(IC)) 2 = (1(2)) 2 = j(j + 1), j (n- 1)

[I(1),1(2)]1 = 0 .

These pseudospin operators are generators of SO(3) 0 SO(3) representation of algebra of

SO(4) symmetry group in quantum mechanics and provide the algebraic basis set [8] of

wavefunctions with quantum numbers (n, Mi, rn2).
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The equivalent quadrupole operator rule (16) can now be recast in terms of pseudospin

vectors IV1) and 1(2) as,

(2) 2 [r/(1) 1 ) (1)/(1) +j/(2)j(2) + 1(2),02)]

qiljk ±1 k k j + ik k ktj

-3n 2 [1( 1)i( 2) + 1i2)i•1)] -n2(n2 -1) + 2n 2 [1(1). 1(2)]

D. Application: Averaged ion-quadrupole interaction

In a number of physical problems, the angular momenta operators V(1) and 1(2) are quan-

tized with respect to independent axes w, and w2 in space. One example is the hydrogen

atom in crossed electric and magnetic fields, where the vectors W, and w2 are expressed [2]

in terms of the electric field strength and the magnetic field induction. This approach is

extended also to time-dependent fields [6]. Another example appears in the theory [3, 5]

of intrashell mixing in excited hydrogen atom by collision with a particle with charge ZB.

Here, in the co-rotating frame, the electric field is space-fixed and directed along the z axis

towards charge ZB, while the effective magnetic field is perpendicular to it and normal to the

collision plane. The theory [3, 5] of intrashell mixing usually accounts only for the leading

and dominant charge-dipole term in the expansion for the full charge (ZB)-Rydberg atom

interaction. The next term is the charge-quadrupole interaction which, in the co-rotating

frame, is
(2)

Z (20)
R3'

where R is a vector directed from the atomic nucleus of the target atom towards the projectile

of charge ZB and the component along R is denoted by subscript 3.

As a useful application of the present equivalent-operator method, we evaluate the average

of interaction (20) appropriate to perturbation theory. Namely, we perform in the SO(3)

® SO(3) representation of Section V C, the average of the quadrupole operator q%) over

the atomic state defined by two quantum numbers m, and M 2 , where mi, i = 1, 2 are the

respective eigenvalues for projection of the vector operators V(i) onto the respective axes wi.

Let ci, i = 1, 2 be the angle between vectors wi and R, and let 13 be the angle between

vectors w, and w2. Algebraic manipulation readily yields the important result

(mlm 2[ q233)mlm 2) = n2 [2m2 cos2 1 2 - 12mlm 2 cosal cos2 ± 2m 2  c 2
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±/(n 2 -1) -4m sin2 a + /(n 2  1)-4m~sin2c 2

- 1) + 2mm 2 cos/3]

for the quadrupole moment averaged over an algebraic basis set of wavefunctions with quan-

tum numbers (n, M 1 , m 2).

VI. EQUIVALENT OCTUPOLE OPERATOR

The cartesian components of the octupole moment as a tensor of rank 3 are defined by Eq.

(8). The octupole-like combinations of L and A which have contributions to the equivalent

octupole operator within the n-shell are based on AAA and LLA. Other combinations

have even parity and are forbidden by the parity rule, as previously explained in Section III.

Following our general procedure, we seek the equivalent octupole operators in the form

Pq(3) P 0) + b O(2),

where the tensor operator 0(1) is derived from the set AAA and 0(2) from the set LLA,

respectively. The precise method for constructing these operators is now explained.

The matrix elements of the 333 tensor components between states with one and three

units difference in angular momentum number are compared. The unknown coefficients a

and b are then solutions of the set of equations,

(ne - 1mlq(3)nrInm) = a(ne - 1mOjO) Inem) + b(ne - l1nO•j2)3I[nn)

(nf - 3mlq() Intm) = a(ne - 3mlO l lIntm) + b(ne - 3mlO 2Intm)

The Cartesian components 0(1) and 0(2) of the octupole-like operators are now con-
The arteiancompnens •'jk ijk

structed from AjAjAk and LiLjAk, respectively. Three operations are then applied to these

elementary combinations to insure that the resulting operators possess the following prop-

erties: (1) they have zero trace when any pair of indices are contracted, (2) they are fully

symmetric with respect to index permutations and (3) they are symmetric over the order of

noncommuting factors.

Given three vector operators a, b and c, the ijk component of the most general octupole-

type operator is given by

1 3 1 "3

oijk(a, b, c) = Z aibjck - - E aibscs - - bij =a1bCk - -ik E- a ,bjcJ (21)
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where Z represents the operation of symmetrization with respect to both index and vector

permutations. For example,

Z[abCk 1 = p(a)C(j p(b)IT(j) p(c),,(k), (22)
36p ir

where p represents a permutation of the vector set {a, b, c} and where ir is a permutation

of the index set {i, j, k}. It is easy to check that the combination (21) obtained in this way

possess all of the above (1)-(3) required properties.

A. Implementation

According to the general prescription (21) above, the operator (8) takes the form oijk =

oijk(r, r, r) so that its ... (or 333) component in cartesian representation is

q33= - o333 (r, r, r) = x3 - 3r2x 3 ,

5

as expected. From vectors L and A, two octupole operators with the same parity as for oijk

can be constructed. One is 0(1) = oijk(A, A, A) and the other is "0(2)k

The zzz (or 333) component of the octupole-type operator 0(1) is
0(1) o 3(AA, A)= [A3_3- (23

333 A3[ E .(AAs)A 3  (23)

With the aid of Eq. (22) and the commutation relations [Ai, Aj] = iEijkLk and [Li, Aj]

i6ijkAk, expression (23) reduces eventually (see Appendix B 1) to simply
03(1) -A: A- 3_(A2A 3 + A3A2) +± A (24)

The second operator

0333 {333(LL,A) Z LA 3 - 5 [(AL,)L 3 + (L•A,)L 3 + (LL,)A3]} , (25)

with the aid of similar algebraic reduction and the additional identity A • L = L • A = 0,

eventually reduces (see Appendix B 2) to

0(2) = L2A 3 - 1(L2A 3 + A3L12 ) + IA 3  (26)333 3 f( 10 5• 32 g3

Using Eqs. (A26), (A27), (A28) - (A31) of Appendix A, the solution of the set of

equations of matrix elements yields the required coefficients to be a = -Ln 3 and b = n.

The equivalent octupole operator within the n-shell is therefore
p (3)p 35n 3 15no3

qijk - 8 oijk (A, A, A) + 8-nojk(L,L,A) (27)
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This is our desired rule which replaces the cartesian octupole (8) by Eq. (27), where the

general components oijk are determined in the prescribed manner.

In particular, the sequences involved are provided in Appendix B for the 0333 case, as an

example characteristic of the overall calculational procedure. Specifically, Eq. (27), with the

aid of A2 + L2 + 1 = n 2 , yields the expression

p(3n (3 5) 2(28)2

nt333n = 1-- [ 3 + 5(AA 3 + A3A - 7A3] 8 (3n + 5) (28)

for the equivalent octupole 333-component operator in the (L, A)-representation.

VII. LIST OF EQUIVALENT MULTIPOLE OPERATORS AND A TEST EXAM-

PLE

We have shown that the cartesian dipole, quadrupole and octupole operators,

q() = xi, (29)

(2) 1 2 j(0q•j = xixj - -3 r (30)

(3) 1r2
qijk = XiXjXk - 5r (xi~k + XjJik + rkc5 j) (31)

have the equivalent intrashell dipole, quadrupole and octupole operators,

(1) _ 3q _ -i 3A_ (32)
2

(2) n (i L 3 ±5n / 226i
q•) : 4 (LiLj + LjL3- 3L + 4-4

(3) 35 3-(1) 15n30(34
ijk 8 n CZ3k + 8(34)

expressed explicitly in terms of the L and A integrals of the motion on the energy

shell. Eq. (32) reproduces the Pauli [7] operator replacement rule, r - -3n/2A, for the

dipole cartesian component (29). Eqs. (33) and (34) summarize our replacement rules

for both the quadrupole and octupole cartesian elements (30) and (31). The operators
O(1) = ojA, AA)a 2)-'j

Sijk(A, A, A) and = Oijk(L, L, A) are defined in Section VI and are calculated

in Appendix B. The n\ scaling law is apparent in Eqs. (32) - (34). Note that equivalent

operators generally contain several terms with simple coefficients.
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A. Application: Multipoles of extreme Stark states

As a test example, consider the permanent multipole moments associated with the ex-

treme Stark hydrogenic states, i.e., for those Stark (parallel and antiparallel) states most

stretched along the positive and negative direction of the Z-axis. With the aid of the re-

placement rules (32)-(34), the appropriate spherical multipole operators QA) are

0= qil) = 32A3 , (35)

Q (2) 3 2 3n= 2) 15qi) =- 4 (L3 3 ~L) ± 45 (A3 -3 A2) (36)

Q() 5() 175n 3  3
0• = 2 q = - 16 -A 5 AA3 - A3A3

16 3 3 iO 3 101(37)

The parabolic and algebraic representation of these states are respectively,

(n-1)00(r) -- I+)= In, j, -j)

0o(.-1)o(r) I-) = In, -j, j)

Any of these hydrogenic stretched states Ice) -- 1±L) has expectation value,

Q(A) (&eIQ('Ic) = ( (")qa)).0. (38)

For the "plus" states I+) = In, j, -j) of the algebraic basis, we have

Q•() w 3n(+IQ01)+)_ 23(3n= (±IQA'(+) ,

where A 3 (+) = -2j = -(n - 1), so that
Q1)(+)_ 3n(n - 1)

2

is the permanent dipole moment for the extreme stretched Stark state. On using L 3(+) = 0,

Lu(+) = n - 1 and A2(+) = n(n - 1), the quadrupole and octupole moments are

Q n (2(n - 1)(5n - 7)

and
Q(3) 5+ n (n_- 1)(n - 2)(7n - 9),

respectively. All these moments are in exact agreement with the analytical results [8] of

theory recently developed solely for the case of these extreme Stark states. Matrix elements

of operators (35)-(37) over the (n, f, m) basis have also been checked for n = 1 - 6.
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VIII. CONCLUSIONS

We have shown that it is possible to construct both the quadrupole and octopole operators

solely in terms of the A, L operators which are integrals of motion on the energy shell with

quantum number n. We have provided and illustrated the various steps involved with their

construction and have derived explicit expressions for these operators. The basic importance

of these expressions is that they furnish the ability to solve various structure and collision

problems solely by algebraic group theoretical techniques and commutation relations based

on the SO(4) symmetry of the hydrogen atom, when the dynamics is confined to the energy

shell. We gave various useful averages of these operators. Our general theory readily provides

the permanent dipole, quadrupole and octupole of polar Rydberg atoms in their extreme

Stark states, a case which can be also solved by less-sophisticated standard techniques. The

present treatment will be key to further developments in the theory of Stark f- mixing via

the combined charge-dipole, charge-quadrupole and charge-octupole interactions evident in

ion-Rydberg atom collisions. The present study would also be important to investigation

[14, 15] of Rydberg atoms in the field of electric multipoles.

Although the dipole, quadrupole and octupole are the most significant in many prac-

tical applications, the full general solution for any multipole remains, at present, elusive.

Although plausible, the very existence of equivalent operators for a general multipole is

not completely certain. Consider, for instance, the hexadecapole operator (i.e., Eq. 5 with

A = 4). Here three tensor operators are appropriate: 0(1) derived from the set AAAA, 0(2)

derived from the set AALL and 0(3) derived from the set LLLL, while the sets AAAL

and ALLL with odd-parity are all forbidden. The equivalent operator can then be taken as

the linear combination aO(') + bO(2) + cO( 3). Three non-zero non-diagonal intrashell matrix

elements (e' = f, f' = f - 2 and e' = f - 4) are then used to fit the coefficients a, b, c, in the

manner prescribed in Section VI.

Although this reasoning could, in principle, be extended to higher multipoles, the overall

procedure ultimately becomes quite cumbersome for actual calculations for larger A. The

simplicity of the coefficients in formulae (32), (33) and (34) possibly indicates that there may

well be simpler methods of derivation. Although fruitful, the present theoretical systematic

pole-by-pole approach may not be sufficiently powerful for the general multipole case. In-

stead, some other more encompassing approach, probably based on study of commutation
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relations (similar, in spirit to the derivation of Pauli replacement rule in the Appendix of

Ref. [3]) could be developed.

Finally, we indicate that there is another context where equivalent operators are of key

importance. Namely, higher order contributions from external fields might be expressed in

terms of equivalent operators. These effects imply virtual intershell (n-changing) transitions

conveniently expressed via Green functions. Although equivalent operators were constructed

quite long ago by Solov'ev [12] for the second-order contributions from electric fields, higher

orders have, as yet, not been considered. Equivalent operators of this type are beyond the

scope of the present study.
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APPENDIX A: INTRASHELL MATRIX ELEMENTS

1. Radial and Angular Elements

A general expression for intrashell radial matrix elements of integer power of r is (see

[16], for example)

(nf'jr•[nf) J Rnfe(r)Rnt(r)r"+2 dr =

1 (n )0-1 [(n + >)!(n -G > 1)! 1/2( _) +• + +

4 2. (n + e<)!(n - t<- 1)!] (
+ (_lV (n + t< + i)!(n - e< - 1 + i)!

F•.•!Z 1-i•)! (n +•> +i - (5¥±1)).,n-e> - 1±+i- (p3+ 1))! '

where the lower limit in summation is i0 = max[0, Q + 1 - (n-t> - 1)], f> = max(y, e') and

f< = min(f, f'). This general equation yields the following useful matrix elements for low

powers of r,

(ntlr°[nt) = 1, (Al)

(n1Ir'jnf) = - [3n2 _ f(e + 1)] (A2)
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(nm - llr'lnf) = 3-nni 2-- f2, (A3)
2

(u£Ir 2I n) = 21n2 [5n2 - (£ + 1) + 1], (A4)

(nh - lr 2In£) -2n(5n2- £2 + 1)_/-n- £2 (A5)
(nf In) =--n5 f2 (M)

(n£- 21r 2 1rn) = 5•n[n2 - j 2 ][n 2 _ (t - 1)2], (A6)

(nflr 3 1nf) = 1n 2 [35n4 - 5n 2(6f(f + 1) - 5) + 3f(f - 1)(t + 1)(f + 2)] , (A7)

(n£- ljr 31nf) = -n 3 (7n2 - 32 + 5)-A2 -- f 2 , (A8)
8

(n£ - 21r 3Inf) 8 n [7n2- £(£- 1) + 2] \/n2 - 2][n2 - (t - 1)2], (A9)

(nf- 31jr 31 ) = 35n3 /[n2 - f 2][n 2 - (£- 1) 2][n 2 - (f - 2)2]. (A10)

The standard angular integral is

(m3r3 jYe2m2 Iiml) = J d Yelm 1 (Q) Ye2m26() Y6m3 (- )*

S (2f1 + 1)(262+ 1) Ce0 =3

47r(263 + 1) C40e60 C1-lt2- 2 "

From standard tables (see [9], for example) of the Clebsch-Gordan coefficients Ct3e 2mM,

we obtain the following angular integrals for the quantum numbers of interest

- mllotm - 3 f2_-_M2

g- lm IY iol m) = ý (2£ - 1)(2f -+ 1)' (All)

(fmlY20fM) = ' • (2 + 1) - 3M2 (A12)

r5 3 (J2 - mi2)[(f - 1) 2 -rn 2 ]
(- 2mnY 2oIrm) = 4 - (A13)7r4(2f - 1)• (2f- 3)(2 +1

7F 3 f2 -5rn 2 -1 t2-M2
- 2 (2£ - 3)-(2• • 3) (2£ - 1-)(2f + 1)' (A14)

F7 5 (f23 - 2)[( -r1)2r -M 2][(t 2)2 m1
(f - 3mjY3o1 n) = ý 2(2£ - 3)(2f - 1)J (2£- 5)(2£ + 1)

2. Dipole Matrix Elements for Section IV

On using the relation (9), radial (A3) and angular (All) integrals, the dipole matrix

elements are
(n - 1tq(l)[1 nfm) = (n£ - lmIQ(1)Inmm)=
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4ir 3n n ( 2 - 2)(t2 - i 2 )A
L3 l ~r~ne)(e- lm[Ylolem) = (2f - 1)(2f 1 (A16)

3. A and L operators

The action of Runge-Lenz vector on n-shell states is (see Adams [1], p. 112, 0. L. DeLange

and R. E. Raab [1], p. 264 or Ref. [17], for example),

(n2W - 2)(f2 7n 2)AI3 flin;n (2f - 1)(2-f1- mu- +r1)

+ (n2 - (f + 1) 2)((f + 1)2 - M 2 ) me +r1) (A17)

(2f + 1)(2f + 3)

The Pauli replacement rule r -* -3n/2A immediately follows on comparing (A16) and

(A17).

In terms of the coefficient

gni = W•- - 2)( --2 ) - (A18)

ge (2e-1)(2t±1),(A8

(A17) can be rewritten as the linear combination

Aa3n f m) = gf In f- 1 M) + gne+l In n - 1 m) (A19)

of (n, f ± 1, m) states. The operators A± = A1 ± iA2 which change m by ±1, respectively,

can also be written as the similar combinations

A+n f m) = +)3 Im,e-i cne In f- 1 m + 1) - 'm,e+l cne+l In f + 1 m + 1)

A_[n t m) = -I-m, Cn If - 1 m - 1) + -ym,+l cne+l In f + 1 m - 1)

of (n, f ± 1, m ± 1) states. The coefficients are

f0m,e = - M 1)(V- M)
7M•, =Of( + M• + 1)W + M),

cnR = (n2 - f2)/(2f - 1)(2f + 1).

For completeness with above, the components L3 and L±, = L1 , iL2 of the L operator obey

the standard relations,

L3In f m) = m In f mi),
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L+Inem) = wm,eIn ±m+1),

LIn f m) = w-m, in f m- 1),

where Wm,e = vl(e- m)( f+ m + 1).

In the subsequent reduction of the basic AjAj and LjLj operations within the quadrupole

operators OT) and OTy and the AiAjAk, AjLjLk and LjLjAk operations within the oc-

tupole operators d') and 0(2) frequent use is made of the standard commutation relations

[Ai, Aj] = iCijkLk, and [Li, Lj] = ic-jkLk together with [Li, Aj] = iCijkAk (which relation

rotates Aj about axis i to give Ak, thereby confirming the vector character of A). We also

employ the additional relations &L AL, =- (A. L) = 0 and & LA, = (L . A) = 0 for 3323

reduction.

4. Quadrupole Matrix Elements for Section V

On using the relation (10), radial (A4) and angular (A12) integrals, the quadrupole matrix

elements are

(nemjq2)3 Intm) = - (n mIQ•12 nfm)
3

27 (nfIr2 n(mIYIn = n2 ( + 1) - 3m 2  U2_31 A
=3 5__( 21 - 3 (2f - 1)(2V + 3) 3e + 1) (A20)

and similarly, using eqs. (A6) and (A13),

(n - 2mIq23)Inm) ='2-(n f - 2 mIQ(2)ln f m) = F-LVh(nf - 2Ir2Ine)(f - 2mjY2ojfm)=

5n 2  (n2 - f2) [n2 - (f - 1) 2] (t 2 - m 2)[(f - 1)2 - m 2] (A21)
2(2t -1) ý(2f -3)(V +±1)

On using Eq. (A19), direct algebraic calculation of the matrix elements of the quadrupole

operators (14) and (15) yields

(n MjO(1)jntm) = g2 + g2tl - _ [ f2 - e+e ± 1) - 1] , (A22)

(nf - 2mIO)) ntm) = gnegne-i, (A23)

(nfm 2Intm) = - I [f(t + 1) - 3m2] , (A24)

(ne- 2mlO 2)Inm) = 0, (A25)

in terms of the ge coefficient (A18). The relation A2 + L2 = n2 - 1 has been used for Eq.

(A22).
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5. Octupole Matrix Elements for Section VI

The octupole matrix elements calculated using Eqs. (11), (A8), (A10), (A14) and (A15)

are

(ne - 1mjqhnfm) = 2 47It( - lrInf)(- lm-mYsojm)-

3n 3 (7n 2 - 3U2 + 5)(f 2 - 5M 2 - 1) (n2 - t2)(t 2 - M2) (A26)8 (2f - 3)(2f + 3) , (2f -• 1)2f+ ) A6

and

(3) 2 35n3

-5-3-q-(rig- 3Ir3Ine)( - 3mIY 3°lem) = 8(2 - 3)(V - 1)

(n - J2)[n2 - (f- 1)2][in2 - (f - 2)2](f2 - M2)[(f - 1)2 - M2][(f - 2)2 - m2]

(2e- 5)(2f+ 1)

Direct calculation based on Eq. (A19) then provides the following octupole matrix ele-

ments

(na - lmIOl) I•rm) = gnt [g2_-i + g.± + g2e+l + 1 3- (n2 -- 1) , (A28)

(nf - 3mIO•13)Intm) = ggntg,-1gn-2, (A29)

(nt - jmIO•)O I n >m) = y2- 5m 2 
- 1), (A30)

5
(nr - 3mO 3331ntm) = 0, (A31)

in terms of the coefficient (A18). The relation A2 + L2 = n2 - 1 has been used in Eq. (A28).

APPENDIX B: (A, L)-REPRESENTATION FOR OPERATORS 0(') AND 0(2)
v333 333

We illustrate here the procedure for evaluating, in terms of (A, L), the 0(1) and 0(2)
v333 '333

operators from their basic definitions (23) and (25). At the outset, proper account must

be taken of the inherent Z-operation prescribed by formula (22) for symmetrization with

respect to both index and vector permutations.

1. The 0(1) component

The definition of 0(1)3 is

333= o333(A, A, A) = Z [A3 - 3 -(AA,)A 3  (B1)
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The first term ZA' = A' is left unaffected. The symmetrized sum can be evaluated via the

following progression of steps:

Z >E(AA,)A3
S

- E (AAA 3 + AA 3A, + AAA 3 + AA 3A8 + A3A8 A, + A 3AA,)
681

1 (A'A3 + AaA') + -••AAaA

1 (A2A 3 + A 3A 2 ) + I 6 (AsA8 A 3 - A8A8A3 + 2A8 A3AA - AaA8 A, + A3AA,)
368 1 1

(A2A3+ A3A 23) + 1 (A, [A3, A,] - [A3, A,] A,)
2

I (A2A 3 + A3A2) + 1 [AAiL 2 - iL 2A1 + A2 (-iL1) - (-iLl)A2]2 6
1 ~(A 2A3 +A 3A 2)+ 1i( [A,, L 21]-[A 2, Li])

l(A2A3 + A 3A 2) + 1i(iA 3 + iA3)
2
1!(A 2A 3 ±+A3A 2) 21A3 .
2 3

The 301) operator, Eq. (B1), therefore reduces to

0(1) A• - (A2A 3 + A 3A2) + A (B2)

as stated by Eq. (24) of the text.

2. The O( component

333 is defined by

333(2) = o333(L, L, A) = Z LA3 - - (A, L,)L 3 + (LA,)L3 + ( (B3)

Because the operators L 3 and A3 commute, the first term Z L2A 3 = L2A 3 is left unaffected.

Symmetrization of the remaining terms proceeds via the following steps:

Z - [(A8 ,L)L3 + (LA,)L3 + (LL,)A3]

1 Z (AL 8 L3 + A8 L3L, + LAL 3 + LL 3 A, + L3AAL, + L3LA,
6S

+LsAsL 3 + LsL 3As + A8 LsL 3 + AsL 3Ls + L3LAA + L3 ALs
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+LLA 3 + LA 3L8 + LLA 3 + LA 3L, + A 3LL, + A 3LL,)

1 E (AsLL 3 + AsL 3L, + LAL 3 + LL 3As + L3ALs + L3LA,)
3S

+1 (L 2A3 + A3L 2) + L, A3•L•+4
= Z(AL 3L, + LL 3A,) + I (L2A 3 ± A 3 L2) + LAL. (B4)

The first sum in the RHS of (B4) transforms from

S1 - (A8 L3L8 + LL 3A,) = >3(AL3L, - ALL 3 + LL 3A8 - L 3L8 A8 )
S S

= (A, [L3, L8] - [L3, Lj] A,).
8

to

S1 = AiL 2 - iL2A1 + A2(-i)L1 - (-i)LlA2 = i [A1, L2] - i [A2, L1] = -2A 3.

The second sum in the RHS of (B4) becomes reduced by the following steps from

S2  EZLA3L, = 1 E (LLA 3 - LLA 3 + 2LA 3L, + A 3LL, - A 3LL,)$2 2 S •3•=-
8 8

(L 2 ±3 A3L 2) + (L8, [A3, L8] - [A3, L,] L,)
8

-1 (L2A3 + A3L) 2+ I (LIA 2 - iA2 L, - L2iAj + iAlL2 )

I L(L2A 3 + A 3L 2) + (i [Li, A 2] - i [L2, Al])

1 (L2A3 + A 3L ) + 1 (iiA3 + (-i)(-i)iA3) (B5)

to

S2 =-(L2A3 + A 3 L2) -A 3

The full 0(2) operator, Eq. (B3), is therefore,

03= L1A 3  m(L A 3 +A 3 L )+-A 3 , (B6)

as stated by Eq. (26) of the text. The end term of Eq. (B6), being extracted from the

detailed algebraic calculation above is the least obvious.
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Abstract

A Rydberg atom embedded in a plasma can experience penetration by slowly moving electrons
within its volume. The original pure Coulomb potential must now be replaced by a screened
Coulomb potential which contains either a screening length R, or a screening factor A = Rs"1. For
any given discrete energy level, there is a Critical Screening Factor (CSF) Ac beyond which the
energy level disappears (by merging into the continuum). Analytical results are obtained for the
classical dependence of the energy on the screening factor, for the CSF, and for the critical radius
of the electron orbit for Circular Rydberg States (CRS) in this screened Rydberg atom. The
results are derived for any general form of the screened Coulomb potential and are applied to the
particular case of the Debye potential. We also show that CRS can temporarily exist above the
ionization threshold and are therefore the classical counterparts of quantal discrete states
embedded into continuum. The results are significant not only to Rydberg plasmas, but also to
fusion plasmas, where Rydberg states of multi-charged hydrogen-like ions result from charge
exchange with hydrogen or deuterium atoms.

PACS numbers: 34.60.+z, 31.70.-f, 31.50.Df

1. Introduction

A new branch of atomic physics - the interactions, dynamics, and collisions in ultra-cold (T <<
1 K) systems - has naturally evolved from recent advances in the cooling and trapping of neutral
gases. In ultra-cold Rydberg plasmas [1 - 3], three-body recombination [4] mainly populates
Rydberg states Ry(n, 1) with high principal and azimuthal quantum numbers n, 1. Quantal and
classical theories have already been presented [5 - 10] of relevant processes: (a) Stark mixing [5 -
8] by collision of Ry(n, 1) with ultra-cold ions redistributes the internal angular momentum
among all states V', (b) radiative cascade [6] from Ry(n, 1) into all lower n'-states, and (c) the first
order interactions between the permanent multi-poles of two Rydberg atoms [10] generated by
the resulting broad distribution of I-states. The physics of ultra-cold Rydberg gases [11 - 13] also
requires the same kind of physical transparency.

In this regard, we are concerned here with the possibility that the large volume of the Rydberg
atom can be exposed to penetration by a swarm of slowly moving electrons, thereby introducing
plasma screening between the Rydberg electron and its parent ionic core. Plasma screening of a
test charge is a well-known phenomenon. For a hydrogen atom or a hydrogen-like ion (an H-
atom, for short), it is effected by replacing the pure Coulomb potential by a screened Coulomb
potential which contains a physical parameter - the screening length R, or its inverse RS"1 = A
known as the screening factor. For example, the Debye-HUckel (or Debye) interaction of an
electron with the electronic shielded field of an ion of charge Z is
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V(R) =- (Ze2/R)exp(-R/Rs), (1)

where Rs [kT/(47re 2Ne)]"!2 t 1.304xl 04(10'0/Ne)"2T"2ao for plasmas of the electron density Ne
(cm"3) and of the temperature T(K). For ultra-cold plasmas, Ne can be as large as - 1010 cm"3 and
the temperature as low as 1K to give R, = 1.3x10 4 a0. Therefore Rs < n2ao for levels n > 114.
Thus, the effects of screening may be important for low temperature Rydberg plasmas.

Outside R, collective effects weaken the interaction of the Rydberg electron with the nucleus.
Bound states are mostly eliminated outside Rs, while within R, bound states are possible. As the
screening becomes stronger, R, decreases and the screening factor A increases, so that the
number of Discrete Energy Levels (DELs) of a screened H-atom becomes reduced and the
degree of degeneracy of the DELs also reduces from n2 to 21+1 (because the degeneracy of I-
states is lifted). For any specific DEL, there is some Critical Screening Factor (CSF) A , such
that for A > Ac this DEL disappears by merging into the continuum.

The DELs and At's were calculated for a (Debye) screened H-atom by various authors (e.g.,
see a recent Ref. [14] and references therein). However, most of this work was concerned only
with numerical results for relatively low lying n, 1 states. Because Rydberg plasmas involve high
n > 20 and high 1, it is important to have A, and the corresponding DELs for screened Rydberg
atoms where quantal numerical calculations become prohibitively difficult and ultimately
impractical.

Some analytical results have already been published [ 15 - 17]. Smith [15] presented DELs for
arbitrary states of a screened H-atom, calculated by the perturbation theory using the basis of the
wave functions of the unscreened Coulomb potential. These results [15] are therefore only valid
when the difference between the screened and unscreened Coulomb potentials is relatively small.
The CSFs for high n-levels correspond, however, to the opposite case and thus cannot be
obtained from the results of Ref. [ 15]. Bessis et al [16] presented DELs for a screened H-atom,
calculated by the perturbation theory using the basis of the wave functions of the Hulthen
potential (see also references therein to previous results of this kind). However, the method
provides rigorous results only for the states of zero angular momentum (1 = 0). As for the 1 > 0-
states most relevant to Rydberg atoms, only some model results were obtained by adding an
approximate rotational term. Rogers et al [17] presented classical results for the energy of
circular Rydberg states in a screened H-atom. However, it was only some basic starting formula
for the energy - the dependence of the energy on the screening factor was not derived in any
usable form. It should be also pointed out that Ref. [17] contained no calculations of the CSF
and/or the critical radius of the electron orbit where DELs disappear.

All the above referenced results were obtained for the Debye potential - the most commonly
used form of the screened Coulomb potential. However, the actual screened Coulomb potential
in plasmas may be more complicated than the Debye potential (see, e.g., Ref. [18]).

In the present paper, we provide classical analytical results for the dependence of the energy on
the screening factor, for the CSF, and for the critical radius of the electron orbit for Circular
Rydberg States (CRS) in a screened H-atom. We obtained the results for a general form of the
screened Coulomb potential. As far as we know, there are, as yet, no published results of any
kind on the CSF and the critical radius of the electron orbit for the general form of the screened
Coulomb potential.

After deriving the results for general screened interactions, we consider a particular case of the
Debye potential. Here, we obtain even more explicit analytical results for the dependence of the
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energy on the screening factor, for the CSF, and for the critical radius of the electron orbit. We
also obtain the analytical dependence of the energy on the screening parameter.

Finally, we demonstrate the existence of the CRS above the ionization threshold. They are
classical counterparts of quantal discrete states embedded into continuum [19]. We show that
some of these states correspond to unstable motion, while the remainder of the CRS above the
ionization threshold corresponds to stable motion.

Before proceeding with our theory, we note that CRS have been extensively studied both
theoretically and experimentally for several reasons (see, e.g., [20 - 23] and references therein).
Firstly, CRS have long radiative lifetimes and highly anisotropic collision cross sections, thereby
enabling experimental observation of inhibited spontaneous emission and other cold Rydberg
gases phenomena [11 -13]. Secondly, classical CRS correspond to quantal coherent states that
are objects of fundamental importance. Thirdly, the classical description of CRS provided here
serves as the leading and primary term in the quantal theory based on the I/n-expansion (see, e.g.
[24] and references therein).

2. Classical analytical results for the general form of the screened Coulomb potential

Consider the H-atom, with nucleus of charge Z is stationary at the origin, embedded in a
plasma. Rydberg plasmas correspond to the case with Z=I. We confine ourselves to circular
electronic orbits of constant radius R. The classical Hamilton function in atomic units e = me = 1
is

H(R, A) = M2/(2R 2) - f(AR)Z/R = E, (2)

where E and M are the energy and the absolute value of the angular momentum which are
constant. The screened Coulomb potential in its general form (i.e., not necessarily the Debye
potential) is V(R) = -f(AR)/R where A • •l/Rs is the screening factor, the inverse value of the
screening radius R, . The function f(x) which represents the departure from the pure Coulomb
attraction has the following properties

f(x) >O0at 0< x <- s frO) = 1, f(• s 0, (3)

so that the pure Coulomb potential is recovered for A = 0, while the potential vanishes as

On introducing the following scaled quantities,

r • -RZ/M2, a •AM2/Z, v •VM2/Z2, "- EM 2/Z2, (4)

the scaled Hamilton function is

h(r, a) •HM 2/Z2  1/(2r 2) - f(ar)/r. (5)

Dynamic equilibrium occurs when

dh/dr = -1/r3 + f/r2 - af'/r = 0, f •df/dx, (6)
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one of the conditions required to determine the equilibrium value ro(a) of the scaled radius of the
orbit for a given scaled screening factor a. It can be re-written in the form:

a = [f(s) - s f'(s)]s, (7)

where s • "aro . The scaled energy "6 at r = r0 is

°6 = 1/2ro2 - f(s)/ro. (8)

As the scaled screening factor a increases and exceeds some critical value ac , the scaled energy
becomes positive, which corresponds to the disappearance of the bound state of the Rydberg
atom (i.e., to the merging of the bound state into the continuum). This critical value a, is
determined by substituting a = ac into the right side of Eq. (8) with °6 = 0 to give

2raf(s,) = 1, (9)

where sc • "ac ro. Equation (9) can be rewritten in the form:

a, = 2s, f(sc), (10)

which, with Eq. (7) for a = ac , yields

2sc f(s,) = [f(s•) - s. f '(s,)]sc, (11)

or the equivalent equation

f(Se) = -se f'(sc) (12)

with respect to only one unknown quantity sc . The solution sco of Eq. (12) is then substituted into
the right side of the Eq. (10) to finally give the critical value of the scaled screening factor as

ac = 2sO f(sCO). (13)

Because the corresponding critical value of the scaled radius of the orbit is ro, = sco/ae, from Eq.
(9), we also obtain

ro, = 1/[2f(seo)]. (14)

By substituting ro = s/a in Eq. (8) and then using the expression for a(s) from Eq. (7), we obtain
the analytical dependence of the energy °(s),

° (s) = {[s f'(s)]2 - [f(s)]2}/2, (15)

on the screening factor a(s), from Eq. (7), via one parameter s.
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3. Classical analytical results for the Debye potential

Application of the preceding general theory is now made to the important particular case of the
Debye potential

v(r, a) =-[exp(-ar)]/r. (16)

The scaled energy at the equilibrium radius r = r0 is

"6(s, ro) = 1/2ro2 
- exp(-s)/ro. (17)

Eq. (7) for the screening parameter yields

a(s) = s(1 + s) exp(-s). (18)

On expressing exp(-s) from Eq. (18) and substituting the result in Eq. (17), we obtain

•8(s, ro) = (s - 1)/[2ro2 (s + 1)] (19)

in agreement with an equivalent expression previously presented by Rogers et al [ 17]. Because
the equilibrium scaled radius is

ro = s/a(s) = exp(s)/(l+s), (20)

Eq. (17) can be expressed as the pure function

6(s, ro) = -[(1-s 2)/2]exp(-2s) (21)

of s alone.
Eq. (21) predicts that the critical value s, at which "8 = 0 is seo = 1. Then Eq. (18) predicts that

the critical screening factor ac = a(sco) at which the corresponding DEL is just about to merge
into the continuum is

ac = 2/e • -0.735759. (22)

The classical scaled radius of this CRS orbit is

roe = sco/ac = e/2 • -1.359141. (23)

Eqns. (18) and (21) provide the analytical dependence of the energy "6 on the screening
factor a via one parameter s. The variation of a(s) and "8(s) with s is illustrated in Figs. 1 and 2,
respectively. Both functions display their maximal values

am, ° 0.839962, -" 0.0318091 (24)
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at s = Sm = (1 + 51/2)/2 ° .1.61803. Figure 3 exhibits directly the dependence of the energy .6 on
the screening parameter a. The maxima of the functions a(s) and °6(s) in Figs. 1 and 2 correspond
to the ">"-shape crossing of the two energy branches in Fig. 3. A simple analysis shows that the
lower energy branch in Fig. 3 corresponds to stable equilibrium, while the upper energy branch
in Fig. 3 corresponds to unstable equilibrium. For the case of two crossing classical energy
branches, identification of the lower branch with stable equilibrium and the upper branch with
unstable equilibrium was also previously shown in several different classical problems [25 - 27].

From Fig. 1, it is seen that there are two equilibrium values of r: r, and r2 > rl for any a < am 0 °

0.839962.The radius r, corresponds to stable equilibrium and thus to a bound (or quasi-bound)
state. The value r2 associated with unstable equilibrium corresponds to the electron escaping to
become free.

From Fig. 2, it is seen that there are only quasi-bound states for a, < a < am (i.e., for
0.735759 < a < 0.839962). These are classical counterparts of quantal discrete states embedded
into continuum [19].

Our classical analytical results for the critical screening factor (CSF) for Rydberg atoms can
now be compared with the quantal numerical calculations for relatively low lying states available
in the literature. Harris [28] and Rogers et al [ 17] have both presented quantal numerical results
up to the level with n = 9 and 1 = 8, i.e., up to the quasi-circular state 9k. For this state, Harris
obtained acHar . -0.77 (Table VI of Ref. [28]) - to be compared with our present asymptotic
analytical result a. = 2/e ° .0.735759. For the same 9k-state, Rogers et al [17] obtained the scaled
critical screening length 1 /acRog ° 1.31 (Table III of Ref. [17]) - to be compared with our
asymptotic analytical result 1/ac = e/2 • o1.359141. For the rest of our results (i.e., for the
overwhelming majority of them), there is, to the best of our knowledge, nothing in the literature
available for comparison.

4. Conclusion

For a general form of the screened Coulomb potential in a plasma, we have obtained classical
analytical results for the dependence of the energy on the screening factor, for the critical
screening factor, and for the critical radius of the electron orbit for circular Rydberg states
(CRS). We have applied the general theory to a particular example of the Debye potential and
derived even more explicit classical analytical results for the above three physical quantities.

We have also demonstrated the existence of the CRS above the ionization threshold. They are
the classical counterparts of quantal discrete states embedded into continuum. Some of these
states correspond to unstable motion, but the remaining CRS above the ionization threshold
correspond to stable motion.

Although this entire study is motivated by the new research area of the physics of cold
Rydberg plasmas, the results are also relevant to other types of plasmas. Examples are fusion
plasmas, where Rydberg states of multicharged hydrogenlike ions result from charge exchange
with hydrogen or deuterium atoms.
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Figures with captions
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Fig. 1. Scaled screening factor a =AM2/Z versus the effective range s of the scaled Debye
potential v = - [exp(-s)]/r.
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Fig. 2. Scaled energy .6 = EM2/Z2 versus the effective range s of the scaled Debye potential v = -

[exp(-s)]/r.
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Fig. 3. Scaled energy 6 = EM/Z of the circular state versus the scaled screening factor a =
AM2/Z for the scaled Debye potential v = - [exp(-ar)]/r.
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